Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

New highly sensitive microfluidic sensor architecture for on-line SERS measurements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918598" target="_blank" >RIV/60461373:22310/19:43918598 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    New highly sensitive microfluidic sensor architecture for on-line SERS measurements

  • Popis výsledku v původním jazyce

    In this work, we demonstrate the microfluidic platform with a plasmon active area. The proposed microfluidic platform utilizes the unique advantages of microfluidics, such as unusual behaviour of microscale-restricted liquids and surface-enhanced Raman spectroscopy, which is able to recognize the single molecule of the targeted analyte. The design and realization of the proposed experimental model include the solving of following tasks: (i) preparation of microfluidic platform using 3D printing; (ii) application of excimer UV laser large-scale surface patterning and local gold deposition for the creation of plasmonic active area (creation of gold grating), (iii) creation of hierarchical plasmonic structure trough further grafting multibranched Au nanoparticles with sharp edges on gold grating surface. The surface properties and structure of plasmon-active area were studied various physical and chemical methods: XPS, AFM, UV-Vis in each of the above steps. The functionality of prepared microfluidic SERS chips was studied to the model analyte R6G. The resulting microfluidic model was compared with the microfluidic model without plasmon-active area or containing single gold grating. In addition, a mathematical simulation of possible processes in microfluidic element was performed using the Comsol software. Experimental results indicate that our SERS microfluidic platform allows detection of model analyte (R6G) at concentrations down to 10 fM (10−15 mol⋅L−1Proposed unique features are the key to new scientific experiments and innovations in the field of lab-on-a-chip devices and analytical approaches.

  • Název v anglickém jazyce

    New highly sensitive microfluidic sensor architecture for on-line SERS measurements

  • Popis výsledku anglicky

    In this work, we demonstrate the microfluidic platform with a plasmon active area. The proposed microfluidic platform utilizes the unique advantages of microfluidics, such as unusual behaviour of microscale-restricted liquids and surface-enhanced Raman spectroscopy, which is able to recognize the single molecule of the targeted analyte. The design and realization of the proposed experimental model include the solving of following tasks: (i) preparation of microfluidic platform using 3D printing; (ii) application of excimer UV laser large-scale surface patterning and local gold deposition for the creation of plasmonic active area (creation of gold grating), (iii) creation of hierarchical plasmonic structure trough further grafting multibranched Au nanoparticles with sharp edges on gold grating surface. The surface properties and structure of plasmon-active area were studied various physical and chemical methods: XPS, AFM, UV-Vis in each of the above steps. The functionality of prepared microfluidic SERS chips was studied to the model analyte R6G. The resulting microfluidic model was compared with the microfluidic model without plasmon-active area or containing single gold grating. In addition, a mathematical simulation of possible processes in microfluidic element was performed using the Comsol software. Experimental results indicate that our SERS microfluidic platform allows detection of model analyte (R6G) at concentrations down to 10 fM (10−15 mol⋅L−1Proposed unique features are the key to new scientific experiments and innovations in the field of lab-on-a-chip devices and analytical approaches.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TK01030128" target="_blank" >TK01030128: H2PLAZMON - Pokročilá plazmonová technologie pro výrobu, skladování a využití "zeleného" vodíku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů