Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies I: Database and methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43919270" target="_blank" >RIV/60461373:22310/19:43919270 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/view/j/psr.2019.4.issue-7/psr-2018-0117/psr-2018-0117.xml" target="_blank" >https://www.degruyter.com/view/j/psr.2019.4.issue-7/psr-2018-0117/psr-2018-0117.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/psr-2018-0117" target="_blank" >10.1515/psr-2018-0117</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies I: Database and methods
Popis výsledku v původním jazyce
This chapter discusses the rationale behind the bitter sensation elicited by chemical compounds, focusing on natural products. Emphasis has been placed on a brief presentation of BitterDB (the database of bitter compounds), along with available methods for the prediction of bitterness in compounds. The fundamental basis for explaining bitterness has been provided, based on the structural features of human bitter taste receptors and have been used to shed light on the mechanistic role of a few out of the 25 known human taste receptors to provide the foundation for understanding how bitter compounds interact with their receptors. Some case studies of ligand-based prediction models based on 2D fingerprints and 3D pharmacophores, along with machine learning methods have been provided. The chapter closes with an attempt to establish the relationship between bitterness and toxicity.
Název v anglickém jazyce
Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies I: Database and methods
Popis výsledku anglicky
This chapter discusses the rationale behind the bitter sensation elicited by chemical compounds, focusing on natural products. Emphasis has been placed on a brief presentation of BitterDB (the database of bitter compounds), along with available methods for the prediction of bitterness in compounds. The fundamental basis for explaining bitterness has been provided, based on the structural features of human bitter taste receptors and have been used to shed light on the mechanistic role of a few out of the 25 known human taste receptors to provide the foundation for understanding how bitter compounds interact with their receptors. Some case studies of ligand-based prediction models based on 2D fingerprints and 3D pharmacophores, along with machine learning methods have been provided. The chapter closes with an attempt to establish the relationship between bitterness and toxicity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008351" target="_blank" >EF16_027/0008351: ChemJets UCT Prague</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Sciences Reviews
ISSN
2365-6581
e-ISSN
2365-659X
Svazek periodika
4
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000472606200003
EID výsledku v databázi Scopus
—