Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies II: prediction tools and case studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43919271" target="_blank" >RIV/60461373:22310/19:43919271 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/view/j/psr.2019.4.issue-8/psr-2019-0007/psr-2019-0007.xml?lang=en" target="_blank" >https://www.degruyter.com/view/j/psr.2019.4.issue-8/psr-2019-0007/psr-2019-0007.xml?lang=en</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/psr-2019-0007" target="_blank" >10.1515/psr-2019-0007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies II: prediction tools and case studies
Popis výsledku v původním jazyce
The first part of this chapter provides an overview of computer-based tools (algorithms, web servers, and software) for the prediction of bitterness in compounds. These tools all implement machine learning (ML) methods and are all freely accessible. For each tool, a brief description of the implemented method is provided, along with the training sets and the benchmarking results. In the second part, an attempt has been made to explain at the mechanistic level why some medicinal plants are bitter and how plants use bitter natural compounds, obtained through the biosynthetic process as important ingredients for adapting to the environment. A further exploration is made on the role of bitter natural products in the defense mechanism of plants against insect pest, herbivores, and other invaders. Case studies have focused on alkaloids, terpenoids, cyanogenic glucosides and phenolic derivatives.
Název v anglickém jazyce
Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies II: prediction tools and case studies
Popis výsledku anglicky
The first part of this chapter provides an overview of computer-based tools (algorithms, web servers, and software) for the prediction of bitterness in compounds. These tools all implement machine learning (ML) methods and are all freely accessible. For each tool, a brief description of the implemented method is provided, along with the training sets and the benchmarking results. In the second part, an attempt has been made to explain at the mechanistic level why some medicinal plants are bitter and how plants use bitter natural compounds, obtained through the biosynthetic process as important ingredients for adapting to the environment. A further exploration is made on the role of bitter natural products in the defense mechanism of plants against insect pest, herbivores, and other invaders. Case studies have focused on alkaloids, terpenoids, cyanogenic glucosides and phenolic derivatives.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008351" target="_blank" >EF16_027/0008351: ChemJets UCT Prague</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Sciences Reviews
ISSN
2365-6581
e-ISSN
2365-659X
Svazek periodika
4
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000476646400004
EID výsledku v databázi Scopus
—