Immobilization of Gold Nanoparticles in Localized Surface Plasmon Polariton-Coupled Hot Spots via Photolytic Dimerization of Aromatic Amine Groups for SERS Detection in a Microfluidic Regime
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924619" target="_blank" >RIV/60461373:22310/22:43924619 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/22:43924619
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsanm.1c03413" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.1c03413</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.1c03413" target="_blank" >10.1021/acsanm.1c03413</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Immobilization of Gold Nanoparticles in Localized Surface Plasmon Polariton-Coupled Hot Spots via Photolytic Dimerization of Aromatic Amine Groups for SERS Detection in a Microfluidic Regime
Popis výsledku v původním jazyce
Plasmon-assisted chemistry is an effective tool for triggering various chemical transformations that can be performed with high spatial precision. Plasmon-triggering efficiency is ensured by a high concentration of light energy near the plasmonic surface and the resulting enhancement of the local electric field (EF). The coupling of different plasmonic nanostructures by multimodal plasmonic hot spots can significantly enhance the EF, increasing plasmon-triggering efficiency. In this work, we demonstrate that the coupling between the traveled surface plasmon polariton (SPP) wave and the localized surface plasmon (LSP) resonance can be used to effectively realize plasmon-induced organic reactions, even in hot spots between SPP- and LSP-supported Au nanostructures. The periodically modulated surface of the gold grating was used as an SPP-active plasmonic support, with spherical Au nanoparticles (AuNPs) ensuring LSP excitation. To model the chemical transformation, we utilized the dimerization of amino groups (previously grafted to Au nanostructures) with azo bridges between the AuNPs and Au grating. The reaction was performed in a microfluidic regime and resulted in AuNP immobilization on the grating surface. Experiments and theoretical studies indicated that the azo-bridge formation and AuNP immobilization occurred only under illumination with the SPP wavelength and proceeded more effectively on the grating walls (particularly the inflection points), where the EF enhancement is greatest due to LSP-SPP coupling. Created structures were subsequently demonstrated as a promising substrate for the SERS-based detection in the microfluidic regime. © 2022 American Chemical Society. All rights reserved.
Název v anglickém jazyce
Immobilization of Gold Nanoparticles in Localized Surface Plasmon Polariton-Coupled Hot Spots via Photolytic Dimerization of Aromatic Amine Groups for SERS Detection in a Microfluidic Regime
Popis výsledku anglicky
Plasmon-assisted chemistry is an effective tool for triggering various chemical transformations that can be performed with high spatial precision. Plasmon-triggering efficiency is ensured by a high concentration of light energy near the plasmonic surface and the resulting enhancement of the local electric field (EF). The coupling of different plasmonic nanostructures by multimodal plasmonic hot spots can significantly enhance the EF, increasing plasmon-triggering efficiency. In this work, we demonstrate that the coupling between the traveled surface plasmon polariton (SPP) wave and the localized surface plasmon (LSP) resonance can be used to effectively realize plasmon-induced organic reactions, even in hot spots between SPP- and LSP-supported Au nanostructures. The periodically modulated surface of the gold grating was used as an SPP-active plasmonic support, with spherical Au nanoparticles (AuNPs) ensuring LSP excitation. To model the chemical transformation, we utilized the dimerization of amino groups (previously grafted to Au nanostructures) with azo bridges between the AuNPs and Au grating. The reaction was performed in a microfluidic regime and resulted in AuNP immobilization on the grating surface. Experiments and theoretical studies indicated that the azo-bridge formation and AuNP immobilization occurred only under illumination with the SPP wavelength and proceeded more effectively on the grating walls (particularly the inflection points), where the EF enhancement is greatest due to LSP-SPP coupling. Created structures were subsequently demonstrated as a promising substrate for the SERS-based detection in the microfluidic regime. © 2022 American Chemical Society. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-02550S" target="_blank" >GA21-02550S: Plazmonem indukované zachycení excitovaného spinového stavu v komplexech se spinovým krosoverem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Nano Materials
ISSN
2574-0970
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1836-1844
Kód UT WoS článku
000757907900001
EID výsledku v databázi Scopus
2-s2.0-85125122835