Nanostructural synergism as Mn–N–C channels in manganese (IV) oxide and fluffy g-C3N4 layered composite with exceptional catalytic capabilities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924818" target="_blank" >RIV/60461373:22310/22:43924818 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0021979721021524?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0021979721021524?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcis.2021.12.023" target="_blank" >10.1016/j.jcis.2021.12.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanostructural synergism as Mn–N–C channels in manganese (IV) oxide and fluffy g-C3N4 layered composite with exceptional catalytic capabilities
Popis výsledku v původním jazyce
The avenues of catalysis and material science are always accepted and it is hoped that a state-of-the-art catalyst with exceptional intrinsic redox characteristics would be produced. This study focused on developing a multi-featured catalyst of high economical and commercial standards to meet the multi-directional applications of environmental and energy demands. Manganese (IV) oxide nanosheets made of fluffy-sheet-like g-C3N4 material were successfully synthesized by pyrolysis method. The electron-rich g-C3N4 network and semiconducting metallic oxides of MnO2 nanosheets generated high electron density interfaces within the intra-composite structure. The input of active interfaces along with strong metal-to-support interactions achieved between two parallel nanosheets in MnO2/g-C3N4 catalyst intrinsically boosted up its electrochemical and optical characteristics for it to be used in multi-catalytic fields. Successful trails of catalysts’ performance have been made in three major catalytic fields with enhanced activities such as heterogeneous catalysis (reduction of nitrobenzene with rate constant of “K = 0.734 min−1” and hydrogenation of styrene with “100% conversion” efficiency, including negligible change in five consecutive cycles), photocatalysis (degradation of methylene blue dye model within 20 min with negligible change in five consecutive cycles) and electrocatalysis (oxygen reduction reactions having comparable “diffusion-limited-current density” behaviour with that of the commercial Pt/C catalyst). The enhanced performance of catalysts in transforming chemicals, degrading organic pollutant species and producing sustainable energy resources from air oxygen can mitigate the challenges faced in environmental and energy crises, respectively. © 2021 The Authors
Název v anglickém jazyce
Nanostructural synergism as Mn–N–C channels in manganese (IV) oxide and fluffy g-C3N4 layered composite with exceptional catalytic capabilities
Popis výsledku anglicky
The avenues of catalysis and material science are always accepted and it is hoped that a state-of-the-art catalyst with exceptional intrinsic redox characteristics would be produced. This study focused on developing a multi-featured catalyst of high economical and commercial standards to meet the multi-directional applications of environmental and energy demands. Manganese (IV) oxide nanosheets made of fluffy-sheet-like g-C3N4 material were successfully synthesized by pyrolysis method. The electron-rich g-C3N4 network and semiconducting metallic oxides of MnO2 nanosheets generated high electron density interfaces within the intra-composite structure. The input of active interfaces along with strong metal-to-support interactions achieved between two parallel nanosheets in MnO2/g-C3N4 catalyst intrinsically boosted up its electrochemical and optical characteristics for it to be used in multi-catalytic fields. Successful trails of catalysts’ performance have been made in three major catalytic fields with enhanced activities such as heterogeneous catalysis (reduction of nitrobenzene with rate constant of “K = 0.734 min−1” and hydrogenation of styrene with “100% conversion” efficiency, including negligible change in five consecutive cycles), photocatalysis (degradation of methylene blue dye model within 20 min with negligible change in five consecutive cycles) and electrocatalysis (oxygen reduction reactions having comparable “diffusion-limited-current density” behaviour with that of the commercial Pt/C catalyst). The enhanced performance of catalysts in transforming chemicals, degrading organic pollutant species and producing sustainable energy resources from air oxygen can mitigate the challenges faced in environmental and energy crises, respectively. © 2021 The Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Colloid and Interface Science
ISSN
0021-9797
e-ISSN
—
Svazek periodika
610
Číslo periodika v rámci svazku
march
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
258-270
Kód UT WoS článku
000750147400012
EID výsledku v databázi Scopus
2-s2.0-85121116128