Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gate-Tunable Spin Hall Effect in Trilayer Graphene/Group-IV Monochalcogenide van der Waals Heterostructures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929856" target="_blank" >RIV/60461373:22310/24:43929856 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202404872" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adfm.202404872</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.202404872" target="_blank" >10.1002/adfm.202404872</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gate-Tunable Spin Hall Effect in Trilayer Graphene/Group-IV Monochalcogenide van der Waals Heterostructures

  • Popis výsledku v původním jazyce

    Spintronic devices require materials that facilitate effective spin transport, generation, and detection. In this regard, graphene emerges as an ideal candidate for long-distance spin transport owing to its minimal spin-orbit coupling, which, however, limits its capacity for effective spin manipulation. This problem can be overcome by putting spin-orbit coupling materials in close contact with graphene leading to spin-orbit proximity and, consequently, efficient spin-to-charge conversion through mechanisms such as the spin Hall effect. Here, the gate-dependent spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS) is reported and quantified, a group-IV monochalcogenide that has recently been predicted to be a viable alternative to transition-metal dichalcogenides for inducing strong spin-orbit coupling in graphene. The spin Hall angle exhibits a maximum around the charge neutrality point of graphene up to room temperature. The findings expand the library of materials that induce spin-orbit coupling in graphene to a new class, group-IV monochalcogenides, thereby highlighting the potential of 2D materials to pave the way for the development of innovative spin-based devices and future technological applications. The spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS), a group-IV monochalcogenide, is observed with non-local spin precession experiments up to room temperature. The output of the spin-charge interconversion as well as the spin Hall angle is gate tunable and exhibits a maximum when the Fermi level is around the charge neutrality point of the graphene. image

  • Název v anglickém jazyce

    Gate-Tunable Spin Hall Effect in Trilayer Graphene/Group-IV Monochalcogenide van der Waals Heterostructures

  • Popis výsledku anglicky

    Spintronic devices require materials that facilitate effective spin transport, generation, and detection. In this regard, graphene emerges as an ideal candidate for long-distance spin transport owing to its minimal spin-orbit coupling, which, however, limits its capacity for effective spin manipulation. This problem can be overcome by putting spin-orbit coupling materials in close contact with graphene leading to spin-orbit proximity and, consequently, efficient spin-to-charge conversion through mechanisms such as the spin Hall effect. Here, the gate-dependent spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS) is reported and quantified, a group-IV monochalcogenide that has recently been predicted to be a viable alternative to transition-metal dichalcogenides for inducing strong spin-orbit coupling in graphene. The spin Hall angle exhibits a maximum around the charge neutrality point of graphene up to room temperature. The findings expand the library of materials that induce spin-orbit coupling in graphene to a new class, group-IV monochalcogenides, thereby highlighting the potential of 2D materials to pave the way for the development of innovative spin-based devices and future technological applications. The spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS), a group-IV monochalcogenide, is observed with non-local spin precession experiments up to room temperature. The output of the spin-charge interconversion as well as the spin Hall angle is gate tunable and exhibits a maximum when the Fermi level is around the charge neutrality point of the graphene. image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10402 - Inorganic and nuclear chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL2101" target="_blank" >LL2101: Příští Generace Monoelementárních 2D Materiálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ADVANCED FUNCTIONAL MATERIALS

  • ISSN

    1616-301X

  • e-ISSN

    1616-3028

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    42

  • Stát vydavatele periodika

    TW - Čínská republika (Tchaj-wan)

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    001207980700001

  • EID výsledku v databázi Scopus

    2-s2.0-85191300731