Gate-Tunable Spin Hall Effect in Trilayer Graphene/Group-IV Monochalcogenide van der Waals Heterostructures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929856" target="_blank" >RIV/60461373:22310/24:43929856 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202404872" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adfm.202404872</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202404872" target="_blank" >10.1002/adfm.202404872</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gate-Tunable Spin Hall Effect in Trilayer Graphene/Group-IV Monochalcogenide van der Waals Heterostructures
Popis výsledku v původním jazyce
Spintronic devices require materials that facilitate effective spin transport, generation, and detection. In this regard, graphene emerges as an ideal candidate for long-distance spin transport owing to its minimal spin-orbit coupling, which, however, limits its capacity for effective spin manipulation. This problem can be overcome by putting spin-orbit coupling materials in close contact with graphene leading to spin-orbit proximity and, consequently, efficient spin-to-charge conversion through mechanisms such as the spin Hall effect. Here, the gate-dependent spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS) is reported and quantified, a group-IV monochalcogenide that has recently been predicted to be a viable alternative to transition-metal dichalcogenides for inducing strong spin-orbit coupling in graphene. The spin Hall angle exhibits a maximum around the charge neutrality point of graphene up to room temperature. The findings expand the library of materials that induce spin-orbit coupling in graphene to a new class, group-IV monochalcogenides, thereby highlighting the potential of 2D materials to pave the way for the development of innovative spin-based devices and future technological applications. The spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS), a group-IV monochalcogenide, is observed with non-local spin precession experiments up to room temperature. The output of the spin-charge interconversion as well as the spin Hall angle is gate tunable and exhibits a maximum when the Fermi level is around the charge neutrality point of the graphene. image
Název v anglickém jazyce
Gate-Tunable Spin Hall Effect in Trilayer Graphene/Group-IV Monochalcogenide van der Waals Heterostructures
Popis výsledku anglicky
Spintronic devices require materials that facilitate effective spin transport, generation, and detection. In this regard, graphene emerges as an ideal candidate for long-distance spin transport owing to its minimal spin-orbit coupling, which, however, limits its capacity for effective spin manipulation. This problem can be overcome by putting spin-orbit coupling materials in close contact with graphene leading to spin-orbit proximity and, consequently, efficient spin-to-charge conversion through mechanisms such as the spin Hall effect. Here, the gate-dependent spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS) is reported and quantified, a group-IV monochalcogenide that has recently been predicted to be a viable alternative to transition-metal dichalcogenides for inducing strong spin-orbit coupling in graphene. The spin Hall angle exhibits a maximum around the charge neutrality point of graphene up to room temperature. The findings expand the library of materials that induce spin-orbit coupling in graphene to a new class, group-IV monochalcogenides, thereby highlighting the potential of 2D materials to pave the way for the development of innovative spin-based devices and future technological applications. The spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS), a group-IV monochalcogenide, is observed with non-local spin precession experiments up to room temperature. The output of the spin-charge interconversion as well as the spin Hall angle is gate tunable and exhibits a maximum when the Fermi level is around the charge neutrality point of the graphene. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2101" target="_blank" >LL2101: Příští Generace Monoelementárních 2D Materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED FUNCTIONAL MATERIALS
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
34
Číslo periodika v rámci svazku
42
Stát vydavatele periodika
TW - Čínská republika (Tchaj-wan)
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
001207980700001
EID výsledku v databázi Scopus
2-s2.0-85191300731