Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Prediction of HVO content in HVO/diesel blends using FTIR and chemometric methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F16%3A43901980" target="_blank" >RIV/60461373:22320/16:43901980 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0016236116001241" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0016236116001241</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fuel.2016.02.010" target="_blank" >10.1016/j.fuel.2016.02.010</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Prediction of HVO content in HVO/diesel blends using FTIR and chemometric methods

  • Popis výsledku v původním jazyce

    Predictive models based on chemometric processing of FTIR spectra were created in order to develop a method for the determination of hydrotreated vegetable oil (HVO) in petroleum diesel/HVO blends. The blends were prepared in the entire concentration range of 0-100 wt.%. The set of samples was divided into calibration and validation sets. Four various approaches to the sample distribution were employed. There were predicted unknown content of known HVO in known diesel (approach 1), unknown content of known HVO in unknown diesel (approach 2), unknown content of unknown HVO in known diesel (approach 3) and finally unknown content of unknown HVO in unknown diesel (approach 4). The spectra obtained from FTIR measurement were processed using a software. Partial least squares regression (PLS) and principal component regression (PCR) were used to develop the predictive models. Optimal combination of preprocessing techniques was sought. In order to find suitable parameters of the preprocessing methods, hundreds of various models were tested. Although the optimal combination of preprocessing techniques was found for the most, some of them were strongly affected by preprocessing. The models with suitable preprocessing were able to predict the HVO content in given validation samples, however, the prediction of the HVO content in unknown "real" samples may be less accurate even incorrect because of the dependence on the kind of preprocessing.

  • Název v anglickém jazyce

    Prediction of HVO content in HVO/diesel blends using FTIR and chemometric methods

  • Popis výsledku anglicky

    Predictive models based on chemometric processing of FTIR spectra were created in order to develop a method for the determination of hydrotreated vegetable oil (HVO) in petroleum diesel/HVO blends. The blends were prepared in the entire concentration range of 0-100 wt.%. The set of samples was divided into calibration and validation sets. Four various approaches to the sample distribution were employed. There were predicted unknown content of known HVO in known diesel (approach 1), unknown content of known HVO in unknown diesel (approach 2), unknown content of unknown HVO in known diesel (approach 3) and finally unknown content of unknown HVO in unknown diesel (approach 4). The spectra obtained from FTIR measurement were processed using a software. Partial least squares regression (PLS) and principal component regression (PCR) were used to develop the predictive models. Optimal combination of preprocessing techniques was sought. In order to find suitable parameters of the preprocessing methods, hundreds of various models were tested. Although the optimal combination of preprocessing techniques was found for the most, some of them were strongly affected by preprocessing. The models with suitable preprocessing were able to predict the HVO content in given validation samples, however, the prediction of the HVO content in unknown "real" samples may be less accurate even incorrect because of the dependence on the kind of preprocessing.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JT - Pohon, motory a paliva

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuel

  • ISSN

    0016-2361

  • e-ISSN

  • Svazek periodika

    174

  • Číslo periodika v rámci svazku

    15. června 2016

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    225-234

  • Kód UT WoS článku

    000370530600027

  • EID výsledku v databázi Scopus

    2-s2.0-84957805482