Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F09%3A00022386" target="_blank" >RIV/60461373:22330/09:00022386 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/10:00024326
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques
Popis výsledku v původním jazyce
The goal of this study was to examine the possibility of verifying the geographical origin of honeys based on the profiles of volatile compounds. A head-space solid phase microextraction (SPME) combined with comprehensive two-dimensional gas chromatography?time-of-flight mass spectrometry (GCxGC--TOFMS) was used to analyze the volatiles in honeys with various geographical and floral origins. Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of volatile compounds. Specifically, linear discriminant analysis (LDA), soft independent modeling of class analogies (SIMCA), discriminant partial least squares (DPLS) and support vector machines (SVM) with the recently proposed Pearson VII universal kernel (PUK) were used in our study to discriminate between Corsican and non-Corsican honeys. Although DPLS and LDA provided models with high se
Název v anglickém jazyce
Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques
Popis výsledku anglicky
The goal of this study was to examine the possibility of verifying the geographical origin of honeys based on the profiles of volatile compounds. A head-space solid phase microextraction (SPME) combined with comprehensive two-dimensional gas chromatography?time-of-flight mass spectrometry (GCxGC--TOFMS) was used to analyze the volatiles in honeys with various geographical and floral origins. Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of volatile compounds. Specifically, linear discriminant analysis (LDA), soft independent modeling of class analogies (SIMCA), discriminant partial least squares (DPLS) and support vector machines (SVM) with the recently proposed Pearson VII universal kernel (PUK) were used in our study to discriminate between Corsican and non-Corsican honeys. Although DPLS and LDA provided models with high se
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GM - Potravinářství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Food Chemistry
ISSN
0308-8146
e-ISSN
—
Svazek periodika
118
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
BE - Belgické království
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000270492500027
EID výsledku v databázi Scopus
—