Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F09%3A00022386" target="_blank" >RIV/60461373:22330/09:00022386 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22330/10:00024326

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques

  • Popis výsledku v původním jazyce

    The goal of this study was to examine the possibility of verifying the geographical origin of honeys based on the profiles of volatile compounds. A head-space solid phase microextraction (SPME) combined with comprehensive two-dimensional gas chromatography?time-of-flight mass spectrometry (GCxGC--TOFMS) was used to analyze the volatiles in honeys with various geographical and floral origins. Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of volatile compounds. Specifically, linear discriminant analysis (LDA), soft independent modeling of class analogies (SIMCA), discriminant partial least squares (DPLS) and support vector machines (SVM) with the recently proposed Pearson VII universal kernel (PUK) were used in our study to discriminate between Corsican and non-Corsican honeys. Although DPLS and LDA provided models with high se

  • Název v anglickém jazyce

    Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques

  • Popis výsledku anglicky

    The goal of this study was to examine the possibility of verifying the geographical origin of honeys based on the profiles of volatile compounds. A head-space solid phase microextraction (SPME) combined with comprehensive two-dimensional gas chromatography?time-of-flight mass spectrometry (GCxGC--TOFMS) was used to analyze the volatiles in honeys with various geographical and floral origins. Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of volatile compounds. Specifically, linear discriminant analysis (LDA), soft independent modeling of class analogies (SIMCA), discriminant partial least squares (DPLS) and support vector machines (SVM) with the recently proposed Pearson VII universal kernel (PUK) were used in our study to discriminate between Corsican and non-Corsican honeys. Although DPLS and LDA provided models with high se

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    GM - Potravinářství

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Food Chemistry

  • ISSN

    0308-8146

  • e-ISSN

  • Svazek periodika

    118

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    BE - Belgické království

  • Počet stran výsledku

    6

  • Strana od-do

  • Kód UT WoS článku

    000270492500027

  • EID výsledku v databázi Scopus