Editorial: Machine Learning in Biomolecular Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F19%3A43918099" target="_blank" >RIV/60461373:22330/19:43918099 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fmolb.2019.00076/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmolb.2019.00076/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmolb.2019.00076" target="_blank" >10.3389/fmolb.2019.00076</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Editorial: Machine Learning in Biomolecular Simulations
Popis výsledku v původním jazyce
Interest in machine learning is growing in all fields of science, industry, and business. This interest was not primarily initiated by new theoretical findings. Interestingly, the theoretical basis of the majority of machine learning techniques, such as artificial neural networks, decision trees, or kernel methods, have been known for a relatively long time. Instead, there are other effects that triggered the recent boom of machine learning. First, machine learning needs data to learn on. Huge data sets from Internet, Internet of Things, social networks, phones, wearable devices, and other sources are now available. Such datasets were not available a decade ago. Second, the recent wave of machine learning benefits from hardware advances, in particular from computing on graphical processing units and specialized hardware. Biomolecular modeling and simulations are an ideal field for the application of machine learning approaches in the spirit of the recent boom of machine learning. Biomolecular simulations produce large amounts of data in the form of trajectories that can be used to train machine learning algorithms. At the same time, vast amounts of genomic data were critical in allowing AlphaFold in leading the field of de novo protein prediction in the most recent CASP protein prediction round. Moreover, GPUs are routinely used in biomolecular simulations for more than a decade to offload critical parts of calculation. This Research Topic collects eight innovative works showcasing the application of machine learning in biomolecular simulations and related fields. It demonstrates major machine learning approaches such as artificial neural networks, random forests, and non-linear dimensionality reduction methods. These techniques are applied in analysis of trajectories, acceleration of biomolecular simulations, parametrization of force fields, and other tasks.
Název v anglickém jazyce
Editorial: Machine Learning in Biomolecular Simulations
Popis výsledku anglicky
Interest in machine learning is growing in all fields of science, industry, and business. This interest was not primarily initiated by new theoretical findings. Interestingly, the theoretical basis of the majority of machine learning techniques, such as artificial neural networks, decision trees, or kernel methods, have been known for a relatively long time. Instead, there are other effects that triggered the recent boom of machine learning. First, machine learning needs data to learn on. Huge data sets from Internet, Internet of Things, social networks, phones, wearable devices, and other sources are now available. Such datasets were not available a decade ago. Second, the recent wave of machine learning benefits from hardware advances, in particular from computing on graphical processing units and specialized hardware. Biomolecular modeling and simulations are an ideal field for the application of machine learning approaches in the spirit of the recent boom of machine learning. Biomolecular simulations produce large amounts of data in the form of trajectories that can be used to train machine learning algorithms. At the same time, vast amounts of genomic data were critical in allowing AlphaFold in leading the field of de novo protein prediction in the most recent CASP protein prediction round. Moreover, GPUs are routinely used in biomolecular simulations for more than a decade to offload critical parts of calculation. This Research Topic collects eight innovative works showcasing the application of machine learning in biomolecular simulations and related fields. It demonstrates major machine learning approaches such as artificial neural networks, random forests, and non-linear dimensionality reduction methods. These techniques are applied in analysis of trajectories, acceleration of biomolecular simulations, parametrization of force fields, and other tasks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC18074" target="_blank" >LTC18074: Autokodéry pro víceúrovňové simulace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Molecular Biosciences
ISSN
2296-889X
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
2
Strana od-do
"76-i"-"76-ii"
Kód UT WoS článku
000483417500001
EID výsledku v databázi Scopus
2-s2.0-85072070167