Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Editorial: Machine Learning in Biomolecular Simulations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F19%3A43918099" target="_blank" >RIV/60461373:22330/19:43918099 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.frontiersin.org/articles/10.3389/fmolb.2019.00076/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmolb.2019.00076/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fmolb.2019.00076" target="_blank" >10.3389/fmolb.2019.00076</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Editorial: Machine Learning in Biomolecular Simulations

  • Popis výsledku v původním jazyce

    Interest in machine learning is growing in all fields of science, industry, and business. This interest was not primarily initiated by new theoretical findings. Interestingly, the theoretical basis of the majority of machine learning techniques, such as artificial neural networks, decision trees, or kernel methods, have been known for a relatively long time. Instead, there are other effects that triggered the recent boom of machine learning. First, machine learning needs data to learn on. Huge data sets from Internet, Internet of Things, social networks, phones, wearable devices, and other sources are now available. Such datasets were not available a decade ago. Second, the recent wave of machine learning benefits from hardware advances, in particular from computing on graphical processing units and specialized hardware. Biomolecular modeling and simulations are an ideal field for the application of machine learning approaches in the spirit of the recent boom of machine learning. Biomolecular simulations produce large amounts of data in the form of trajectories that can be used to train machine learning algorithms. At the same time, vast amounts of genomic data were critical in allowing AlphaFold in leading the field of de novo protein prediction in the most recent CASP protein prediction round. Moreover, GPUs are routinely used in biomolecular simulations for more than a decade to offload critical parts of calculation. This Research Topic collects eight innovative works showcasing the application of machine learning in biomolecular simulations and related fields. It demonstrates major machine learning approaches such as artificial neural networks, random forests, and non-linear dimensionality reduction methods. These techniques are applied in analysis of trajectories, acceleration of biomolecular simulations, parametrization of force fields, and other tasks.

  • Název v anglickém jazyce

    Editorial: Machine Learning in Biomolecular Simulations

  • Popis výsledku anglicky

    Interest in machine learning is growing in all fields of science, industry, and business. This interest was not primarily initiated by new theoretical findings. Interestingly, the theoretical basis of the majority of machine learning techniques, such as artificial neural networks, decision trees, or kernel methods, have been known for a relatively long time. Instead, there are other effects that triggered the recent boom of machine learning. First, machine learning needs data to learn on. Huge data sets from Internet, Internet of Things, social networks, phones, wearable devices, and other sources are now available. Such datasets were not available a decade ago. Second, the recent wave of machine learning benefits from hardware advances, in particular from computing on graphical processing units and specialized hardware. Biomolecular modeling and simulations are an ideal field for the application of machine learning approaches in the spirit of the recent boom of machine learning. Biomolecular simulations produce large amounts of data in the form of trajectories that can be used to train machine learning algorithms. At the same time, vast amounts of genomic data were critical in allowing AlphaFold in leading the field of de novo protein prediction in the most recent CASP protein prediction round. Moreover, GPUs are routinely used in biomolecular simulations for more than a decade to offload critical parts of calculation. This Research Topic collects eight innovative works showcasing the application of machine learning in biomolecular simulations and related fields. It demonstrates major machine learning approaches such as artificial neural networks, random forests, and non-linear dimensionality reduction methods. These techniques are applied in analysis of trajectories, acceleration of biomolecular simulations, parametrization of force fields, and other tasks.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTC18074" target="_blank" >LTC18074: Autokodéry pro víceúrovňové simulace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Frontiers in Molecular Biosciences

  • ISSN

    2296-889X

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    AUG

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    2

  • Strana od-do

    "76-i"-"76-ii"

  • Kód UT WoS článku

    000483417500001

  • EID výsledku v databázi Scopus

    2-s2.0-85072070167