Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel urban mobility classification approach based on convolutional neural networks and mobility-to-image encoding

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252791" target="_blank" >RIV/61989100:27240/23:10252791 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/23:10252791

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1319157823001076" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1319157823001076</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jksuci.2023.101561" target="_blank" >10.1016/j.jksuci.2023.101561</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel urban mobility classification approach based on convolutional neural networks and mobility-to-image encoding

  • Popis výsledku v původním jazyce

    Over the last few decades, the classification and prediction of mobility trajectories in dynamic networks have become major research topics. Switching of mobility areas (hand-over) in modern cellular networks is frequent due to restricted coverage area and node speeds (urban, highway, etc.). Accurate management of hand-over events is highly desirable to improve the system&apos;s quality of service. We have exploited the high accuracy of machine learning to classify user mobility from mobility traces which we encoded into images. The method delivers high performance in mobility classification/prediction (exceeding 95%) and avoids the need to study and implement a dedicated neural network structure. The technique requires the conversion of mobility traces into image structures and the subsequent application of a convolutional neural network. We propose a novel approach to classifying mobility that involves data-to-image encoding and machine learning for image classification. Numerous simulations were performed to demonstrate the benefits of the proposed technique and to illustrate the variance in the accuracy of the functions of many encoding/classification parameters. The work represents a first preliminary step towards a new mobility prediction approach. We demonstrate that it is possible to achieve a very high level of prediction accuracy with low computational complexity, exploiting the strength of neural networks in image recognition. (C) 2023 The Author(s)

  • Název v anglickém jazyce

    A novel urban mobility classification approach based on convolutional neural networks and mobility-to-image encoding

  • Popis výsledku anglicky

    Over the last few decades, the classification and prediction of mobility trajectories in dynamic networks have become major research topics. Switching of mobility areas (hand-over) in modern cellular networks is frequent due to restricted coverage area and node speeds (urban, highway, etc.). Accurate management of hand-over events is highly desirable to improve the system&apos;s quality of service. We have exploited the high accuracy of machine learning to classify user mobility from mobility traces which we encoded into images. The method delivers high performance in mobility classification/prediction (exceeding 95%) and avoids the need to study and implement a dedicated neural network structure. The technique requires the conversion of mobility traces into image structures and the subsequent application of a convolutional neural network. We propose a novel approach to classifying mobility that involves data-to-image encoding and machine learning for image classification. Numerous simulations were performed to demonstrate the benefits of the proposed technique and to illustrate the variance in the accuracy of the functions of many encoding/classification parameters. The work represents a first preliminary step towards a new mobility prediction approach. We demonstrate that it is possible to achieve a very high level of prediction accuracy with low computational complexity, exploiting the strength of neural networks in image recognition. (C) 2023 The Author(s)

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of King Saud University - Computer and Information Sciences

  • ISSN

    1319-1578

  • e-ISSN

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    SA - Království Saúdská Arábie

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    001042923200001

  • EID výsledku v databázi Scopus

    2-s2.0-85158045553