A novel urban mobility classification approach based on convolutional neural networks and mobility-to-image encoding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252791" target="_blank" >RIV/61989100:27240/23:10252791 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10252791
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1319157823001076" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1319157823001076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jksuci.2023.101561" target="_blank" >10.1016/j.jksuci.2023.101561</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel urban mobility classification approach based on convolutional neural networks and mobility-to-image encoding
Popis výsledku v původním jazyce
Over the last few decades, the classification and prediction of mobility trajectories in dynamic networks have become major research topics. Switching of mobility areas (hand-over) in modern cellular networks is frequent due to restricted coverage area and node speeds (urban, highway, etc.). Accurate management of hand-over events is highly desirable to improve the system's quality of service. We have exploited the high accuracy of machine learning to classify user mobility from mobility traces which we encoded into images. The method delivers high performance in mobility classification/prediction (exceeding 95%) and avoids the need to study and implement a dedicated neural network structure. The technique requires the conversion of mobility traces into image structures and the subsequent application of a convolutional neural network. We propose a novel approach to classifying mobility that involves data-to-image encoding and machine learning for image classification. Numerous simulations were performed to demonstrate the benefits of the proposed technique and to illustrate the variance in the accuracy of the functions of many encoding/classification parameters. The work represents a first preliminary step towards a new mobility prediction approach. We demonstrate that it is possible to achieve a very high level of prediction accuracy with low computational complexity, exploiting the strength of neural networks in image recognition. (C) 2023 The Author(s)
Název v anglickém jazyce
A novel urban mobility classification approach based on convolutional neural networks and mobility-to-image encoding
Popis výsledku anglicky
Over the last few decades, the classification and prediction of mobility trajectories in dynamic networks have become major research topics. Switching of mobility areas (hand-over) in modern cellular networks is frequent due to restricted coverage area and node speeds (urban, highway, etc.). Accurate management of hand-over events is highly desirable to improve the system's quality of service. We have exploited the high accuracy of machine learning to classify user mobility from mobility traces which we encoded into images. The method delivers high performance in mobility classification/prediction (exceeding 95%) and avoids the need to study and implement a dedicated neural network structure. The technique requires the conversion of mobility traces into image structures and the subsequent application of a convolutional neural network. We propose a novel approach to classifying mobility that involves data-to-image encoding and machine learning for image classification. Numerous simulations were performed to demonstrate the benefits of the proposed technique and to illustrate the variance in the accuracy of the functions of many encoding/classification parameters. The work represents a first preliminary step towards a new mobility prediction approach. We demonstrate that it is possible to achieve a very high level of prediction accuracy with low computational complexity, exploiting the strength of neural networks in image recognition. (C) 2023 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of King Saud University - Computer and Information Sciences
ISSN
1319-1578
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
SA - Království Saúdská Arábie
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001042923200001
EID výsledku v databázi Scopus
2-s2.0-85158045553