Green tea: Authentication of geographic origin based on UHPLC-HRMS fingerprints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F19%3A43918769" target="_blank" >RIV/60461373:22330/19:43918769 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0889157518311505?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0889157518311505?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfca.2019.02.004" target="_blank" >10.1016/j.jfca.2019.02.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Green tea: Authentication of geographic origin based on UHPLC-HRMS fingerprints
Popis výsledku v původním jazyce
The quality of green tea is influenced by many factors, geographic origin being one of high importance, as this parameter is typically associated with tea quality grade. However, in some cases, fraudulent practices such as mislabelling of geographic origin may take place. In this pilot study, aimed at green tea authentication, we investigated whether metabolic fingerprinting based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC–HRMS) enables sample classification to be achieved. In total, 54 authentic samples of green tea originating from China (n = 29), Japan (n = 17) and South Korea (n = 8) were available for experiments. To isolate even less polar metabolites, a dichloromethane/methanol (1:1. v/v) mixture was used for extraction. The data generated by the analysis of green tea extracts were processed by both unsupervised and supervised chemometric methods. The resulting predictive models document the applicability of this approach for green tea classification based on geographic origin. © 2019 Elsevier Inc.
Název v anglickém jazyce
Green tea: Authentication of geographic origin based on UHPLC-HRMS fingerprints
Popis výsledku anglicky
The quality of green tea is influenced by many factors, geographic origin being one of high importance, as this parameter is typically associated with tea quality grade. However, in some cases, fraudulent practices such as mislabelling of geographic origin may take place. In this pilot study, aimed at green tea authentication, we investigated whether metabolic fingerprinting based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC–HRMS) enables sample classification to be achieved. In total, 54 authentic samples of green tea originating from China (n = 29), Japan (n = 17) and South Korea (n = 8) were available for experiments. To isolate even less polar metabolites, a dichloromethane/methanol (1:1. v/v) mixture was used for extraction. The data generated by the analysis of green tea extracts were processed by both unsupervised and supervised chemometric methods. The resulting predictive models document the applicability of this approach for green tea classification based on geographic origin. © 2019 Elsevier Inc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Food Composition and Analysis
ISSN
0889-1575
e-ISSN
—
Svazek periodika
78
Číslo periodika v rámci svazku
MAY 2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
121-128
Kód UT WoS článku
000462800800014
EID výsledku v databázi Scopus
2-s2.0-85061642500