Edge Detection in Biomedical Images Using Self-Organizing Maps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F13%3A43894972" target="_blank" >RIV/60461373:22340/13:43894972 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications/edge-detection-in-biomedical-images-using-self-organizing-maps" target="_blank" >http://www.intechopen.com/books/artificial-neural-networks-architectures-and-applications/edge-detection-in-biomedical-images-using-self-organizing-maps</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5772/51468" target="_blank" >10.5772/51468</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edge Detection in Biomedical Images Using Self-Organizing Maps
Popis výsledku v původním jazyce
The application of self-organizing maps (SOMs) to the edge detection in biomedical images is discussed. The SOM algorithm has been implemented in MATLAB program suite with various optional parameters enabling the adjustment of the model according to theuser?s requirements. For easier application of SOM the graphical user interface has been developed. The edge detection procedure is a critical step in the analysis of biomedical images, enabling for instance the detection of the abnormal structure or therecognition of different types of tissue. The self-organizing map provides a quick and easy approach for edge detection tasks with satisfying quality of outputs, which has been verified using the high-resolution computed tomography images capturing theexpressions of the Granulomatosis with polyangiitis. The obtained results have been discussed with an expert as well.
Název v anglickém jazyce
Edge Detection in Biomedical Images Using Self-Organizing Maps
Popis výsledku anglicky
The application of self-organizing maps (SOMs) to the edge detection in biomedical images is discussed. The SOM algorithm has been implemented in MATLAB program suite with various optional parameters enabling the adjustment of the model according to theuser?s requirements. For easier application of SOM the graphical user interface has been developed. The edge detection procedure is a critical step in the analysis of biomedical images, enabling for instance the detection of the abnormal structure or therecognition of different types of tissue. The self-organizing map provides a quick and easy approach for edge detection tasks with satisfying quality of outputs, which has been verified using the high-resolution computed tomography images capturing theexpressions of the Granulomatosis with polyangiitis. The obtained results have been discussed with an expert as well.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Artificial Neural Networks - Architectures and Applications
ISBN
978-953-51-0935-8
Počet stran výsledku
19
Strana od-do
125-143
Počet stran knihy
256
Název nakladatele
InTech
Místo vydání
Rijeka
Kód UT WoS kapitoly
—