Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F15%3A43900188" target="_blank" >RIV/60461373:22340/15:43900188 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jbiotec.2014.12.003" target="_blank" >http://dx.doi.org/10.1016/j.jbiotec.2014.12.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jbiotec.2014.12.003" target="_blank" >10.1016/j.jbiotec.2014.12.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture
Popis výsledku v původním jazyce
Application of quality by design (QbD) requires identification of the maximum operating range for parameters affecting the cell culture process. These include hydrodynamic stress, mass transfer or gradients in dissolved oxygen and pH. Since most of theseare affected by the impeller design and speed, the main goal of this work was to identify a maximum operating range for hydrodynamic stress, where no variation of cell growth, productivity and product quality can be ensured. Two scale-down models were developed operating under laminar and turbulent condition, generating repetitive oscillating hydrodynamic stress with maximum stress values ranging from 0.4 to 420 Pa, to compare the effect of the different flow regimes on the cells behavior. Two manufacturing cell lines (CHO and Sp2/0) used for the synthesis of therapeutic proteins were employed in this study. For both cell lines multiple process outputs were used to determine the threshold values of hydrodynamic stress, such as cell gro
Název v anglickém jazyce
Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture
Popis výsledku anglicky
Application of quality by design (QbD) requires identification of the maximum operating range for parameters affecting the cell culture process. These include hydrodynamic stress, mass transfer or gradients in dissolved oxygen and pH. Since most of theseare affected by the impeller design and speed, the main goal of this work was to identify a maximum operating range for hydrodynamic stress, where no variation of cell growth, productivity and product quality can be ensured. Two scale-down models were developed operating under laminar and turbulent condition, generating repetitive oscillating hydrodynamic stress with maximum stress values ranging from 0.4 to 420 Pa, to compare the effect of the different flow regimes on the cells behavior. Two manufacturing cell lines (CHO and Sp2/0) used for the synthesis of therapeutic proteins were employed in this study. For both cell lines multiple process outputs were used to determine the threshold values of hydrodynamic stress, such as cell gro
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CI - Průmyslová chemie a chemické inženýrství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF BIOTECHNOLOGY
ISSN
0168-1656
e-ISSN
—
Svazek periodika
194
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
100-109
Kód UT WoS článku
000347721700014
EID výsledku v databázi Scopus
—