Goedel and Caratheodory Theorems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F17%3A43913129" target="_blank" >RIV/60461373:22340/17:43913129 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/319618405_Goedel_and_Caratheodory_Theorems" target="_blank" >https://www.researchgate.net/publication/319618405_Goedel_and_Caratheodory_Theorems</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Goedel and Caratheodory Theorems
Popis výsledku v původním jazyce
We show that the Caratheodory I. and II. theorems and his formulation the II. Law of Thermodynamics are physically analogous with the real sense of the Goedel?s wording of his I. and II. incompleteness theorems. By using physical terms the Caratheodory theorems express the properties of the Peano Aritmetic inferential process (and even properties of any deductive and recursively axiomatic inference at all); as such they set physical and then the logical limits of any real inference (of the sound, not paradoxical thinking) which can run only on a physical/thermodynamic basis. Then the real/physical sense of the Goedel?s wording of his incompleteness theorems, just having been expressed in the form of the Caratheodory theorems and their common formulation as the II. Law of Thermodynamics, is in the very base of the physics. Then it is obvious that the Caratheodory's formulations about the adiabatic changes, having been compared with, or translated into, the formulations of the Goedel's proof, represent the first historical and clear statement of gnoseological limitations of the deductive and recursively axiomatic inference and sound thinking at all. And that the very real sense of the Goedel incompleteness theorems is the metaarithmetic-logical analog of the II. Law of Thermodynamics.
Název v anglickém jazyce
Goedel and Caratheodory Theorems
Popis výsledku anglicky
We show that the Caratheodory I. and II. theorems and his formulation the II. Law of Thermodynamics are physically analogous with the real sense of the Goedel?s wording of his I. and II. incompleteness theorems. By using physical terms the Caratheodory theorems express the properties of the Peano Aritmetic inferential process (and even properties of any deductive and recursively axiomatic inference at all); as such they set physical and then the logical limits of any real inference (of the sound, not paradoxical thinking) which can run only on a physical/thermodynamic basis. Then the real/physical sense of the Goedel?s wording of his incompleteness theorems, just having been expressed in the form of the Caratheodory theorems and their common formulation as the II. Law of Thermodynamics, is in the very base of the physics. Then it is obvious that the Caratheodory's formulations about the adiabatic changes, having been compared with, or translated into, the formulations of the Goedel's proof, represent the first historical and clear statement of gnoseological limitations of the deductive and recursively axiomatic inference and sound thinking at all. And that the very real sense of the Goedel incompleteness theorems is the metaarithmetic-logical analog of the II. Law of Thermodynamics.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IIAS-Transactions on System Research and Cybernetics
ISSN
1609-8625
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
11
Strana od-do
1-10
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—