Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Goedel Proof, Information Transfer and Thermodynamics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F15%3A43900692" target="_blank" >RIV/60461373:22340/15:43900692 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Goedel Proof, Information Transfer and Thermodynamics

  • Popis výsledku v původním jazyce

    The formula of an arithmetic theory based on Peano Arithmetics is a chain of symbols of its meta-language in which the theory is formulated such that it is both in convenience with the syntax of the meta-language and with the inferential rules of the theory. Syntactic rules constructing formulae of the theory (but not only !) are not its inferential rules. Although the meta-language syntax is defined recursively - by the recursive writing of mathematical-logical claims, only those recursively written meta-language&apos;s chains which formulate mathematical-logical claims about finite (precisely recursive) sets of individua of the theory, computable totally (thus recursive) and as always true are the formulae of the theory. Formulas of the theory are not those claims which are true as for the individua of the theory, but not inferable within the theory (Great Fermat&apos;s Theorem). They are provable but within another theory (with further axioms than only those of Peano). Also the chains expressing methodological claims, even being written recursively (Goedel Undecidable Formula) are not parts of the theory and also they are not of the inferential system; the same is for their negations. We show the Goedel substitution function}is not the total one and thus is not recursive. It is not defined for the Goedel Undecidable Formula&apos;s construction. For this construction, the structure of which is visible clearly, we are setting the zero value. This correction is based on information, thermodynamic and computing considerations, simplifies the Goedel original proof and is valid for the consistent arithmetic theories directly.

  • Název v anglickém jazyce

    Goedel Proof, Information Transfer and Thermodynamics

  • Popis výsledku anglicky

    The formula of an arithmetic theory based on Peano Arithmetics is a chain of symbols of its meta-language in which the theory is formulated such that it is both in convenience with the syntax of the meta-language and with the inferential rules of the theory. Syntactic rules constructing formulae of the theory (but not only !) are not its inferential rules. Although the meta-language syntax is defined recursively - by the recursive writing of mathematical-logical claims, only those recursively written meta-language&apos;s chains which formulate mathematical-logical claims about finite (precisely recursive) sets of individua of the theory, computable totally (thus recursive) and as always true are the formulae of the theory. Formulas of the theory are not those claims which are true as for the individua of the theory, but not inferable within the theory (Great Fermat&apos;s Theorem). They are provable but within another theory (with further axioms than only those of Peano). Also the chains expressing methodological claims, even being written recursively (Goedel Undecidable Formula) are not parts of the theory and also they are not of the inferential system; the same is for their negations. We show the Goedel substitution function}is not the total one and thus is not recursive. It is not defined for the Goedel Undecidable Formula&apos;s construction. For this construction, the structure of which is visible clearly, we are setting the zero value. This correction is based on information, thermodynamic and computing considerations, simplifies the Goedel original proof and is valid for the consistent arithmetic theories directly.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IIAS-Transactions on System Research and Cybernetics

  • ISSN

    1609-8625

  • e-ISSN

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CA - Kanada

  • Počet stran výsledku

    11

  • Strana od-do

    48-58

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus