Information Transfer and Thermodynamics Point of View on Goedel Proof
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F18%3A43913131" target="_blank" >RIV/60461373:22340/18:43913131 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5772/intechopen.68809" target="_blank" >http://dx.doi.org/10.5772/intechopen.68809</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5772/intechopen.68809" target="_blank" >10.5772/intechopen.68809</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information Transfer and Thermodynamics Point of View on Goedel Proof
Popis výsledku v původním jazyce
Formula of an arithmetic theory based on Peano Arithmetics (including it) is a chain of symbols of its super-language (in which the theory is formulated). Such a chain is both in convenience with the syntax of the super-language and with the inferential rules of the theory (Modus Ponens, Generalization). Syntactic rules constructing formulas of the theory are not its inferential rules. Although the super-language syntax is defined recursively - by the recursive writing of mathematical-logical claims - only those recursively written super-language's chains which formulate mathematical-logical claims about finite sets of individua of the theory, computable totally (thus recursive) and always true are the formulas of the theory. Formulas of the theory are not those claims which are true as for the individua of the theory, but not inferable within the theory (Great Fermat's Theorem). They are provable but within another theory (with both Peano and further axioms). Also the chains expressing methodological claims, even being written recursively (Goedel Undecidable Formula) are not parts of the theory. The same applies to their negations. We show the Goedel substitution function is not the total one and thus is not recursive. It is not defined for the Goedel Undecidable Formula's construction. For this case, the structure of which is visible clearly, we are adding the zero value. This correction is based on information, thermodynamic and computing considerations, simplifies the Goedel original proof and is valid for the consistent arithmetic theories directly.
Název v anglickém jazyce
Information Transfer and Thermodynamics Point of View on Goedel Proof
Popis výsledku anglicky
Formula of an arithmetic theory based on Peano Arithmetics (including it) is a chain of symbols of its super-language (in which the theory is formulated). Such a chain is both in convenience with the syntax of the super-language and with the inferential rules of the theory (Modus Ponens, Generalization). Syntactic rules constructing formulas of the theory are not its inferential rules. Although the super-language syntax is defined recursively - by the recursive writing of mathematical-logical claims - only those recursively written super-language's chains which formulate mathematical-logical claims about finite sets of individua of the theory, computable totally (thus recursive) and always true are the formulas of the theory. Formulas of the theory are not those claims which are true as for the individua of the theory, but not inferable within the theory (Great Fermat's Theorem). They are provable but within another theory (with both Peano and further axioms). Also the chains expressing methodological claims, even being written recursively (Goedel Undecidable Formula) are not parts of the theory. The same applies to their negations. We show the Goedel substitution function is not the total one and thus is not recursive. It is not defined for the Goedel Undecidable Formula's construction. For this case, the structure of which is visible clearly, we are adding the zero value. This correction is based on information, thermodynamic and computing considerations, simplifies the Goedel original proof and is valid for the consistent arithmetic theories directly.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Ontology in Information Science
ISBN
978-953-51-5354-2
Počet stran výsledku
22
Strana od-do
279-300
Počet stran knihy
310
Název nakladatele
InTech
Místo vydání
Rijeka
Kód UT WoS kapitoly
—