Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Information Transfer and Thermodynamics Point of View on Goedel Proof

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F18%3A43913131" target="_blank" >RIV/60461373:22340/18:43913131 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5772/intechopen.68809" target="_blank" >http://dx.doi.org/10.5772/intechopen.68809</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5772/intechopen.68809" target="_blank" >10.5772/intechopen.68809</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Information Transfer and Thermodynamics Point of View on Goedel Proof

  • Popis výsledku v původním jazyce

    Formula of an arithmetic theory based on Peano Arithmetics (including it) is a chain of symbols of its super-language (in which the theory is formulated). Such a chain is both in convenience with the syntax of the super-language and with the inferential rules of the theory (Modus Ponens, Generalization). Syntactic rules constructing formulas of the theory are not its inferential rules. Although the super-language syntax is defined recursively - by the recursive writing of mathematical-logical claims - only those recursively written super-language&apos;s chains which formulate mathematical-logical claims about finite sets of individua of the theory, computable totally (thus recursive) and always true are the formulas of the theory. Formulas of the theory are not those claims which are true as for the individua of the theory, but not inferable within the theory (Great Fermat&apos;s Theorem). They are provable but within another theory (with both Peano and further axioms). Also the chains expressing methodological claims, even being written recursively (Goedel Undecidable Formula) are not parts of the theory. The same applies to their negations. We show the Goedel substitution function is not the total one and thus is not recursive. It is not defined for the Goedel Undecidable Formula&apos;s construction. For this case, the structure of which is visible clearly, we are adding the zero value. This correction is based on information, thermodynamic and computing considerations, simplifies the Goedel original proof and is valid for the consistent arithmetic theories directly.

  • Název v anglickém jazyce

    Information Transfer and Thermodynamics Point of View on Goedel Proof

  • Popis výsledku anglicky

    Formula of an arithmetic theory based on Peano Arithmetics (including it) is a chain of symbols of its super-language (in which the theory is formulated). Such a chain is both in convenience with the syntax of the super-language and with the inferential rules of the theory (Modus Ponens, Generalization). Syntactic rules constructing formulas of the theory are not its inferential rules. Although the super-language syntax is defined recursively - by the recursive writing of mathematical-logical claims - only those recursively written super-language&apos;s chains which formulate mathematical-logical claims about finite sets of individua of the theory, computable totally (thus recursive) and always true are the formulas of the theory. Formulas of the theory are not those claims which are true as for the individua of the theory, but not inferable within the theory (Great Fermat&apos;s Theorem). They are provable but within another theory (with both Peano and further axioms). Also the chains expressing methodological claims, even being written recursively (Goedel Undecidable Formula) are not parts of the theory. The same applies to their negations. We show the Goedel substitution function is not the total one and thus is not recursive. It is not defined for the Goedel Undecidable Formula&apos;s construction. For this case, the structure of which is visible clearly, we are adding the zero value. This correction is based on information, thermodynamic and computing considerations, simplifies the Goedel original proof and is valid for the consistent arithmetic theories directly.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Ontology in Information Science

  • ISBN

    978-953-51-5354-2

  • Počet stran výsledku

    22

  • Strana od-do

    279-300

  • Počet stran knihy

    310

  • Název nakladatele

    InTech

  • Místo vydání

    Rijeka

  • Kód UT WoS kapitoly