Dynamic optimization of an emulsion copolymerization process for product quality using a deterministic kinetic model with embedded Monte Carlo simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F19%3A43919973" target="_blank" >RIV/60461373:22340/19:43919973 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0098135419305472?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0098135419305472?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compchemeng.2019.106566" target="_blank" >10.1016/j.compchemeng.2019.106566</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic optimization of an emulsion copolymerization process for product quality using a deterministic kinetic model with embedded Monte Carlo simulations
Popis výsledku v původním jazyce
We present the dynamic optimization of an emulsion copolymerization process described by a deterministic kinetic ordinary differential equation model including a stochastic Monte Carlo submodel, describing the growth of polymer chains within particles. For the considered semi-batch operation, the time dependent input trajectories for monomer and initiator flow rates are optimized along with the isothermal reactor temperature. We use the surrogate-model-based optimizer MATSuMoTo for the optimization to avoid the need to compute derivatives of the stochastic model. Radial basis functions with linear polynomial tails are selected as surrogate functions which are updated during optimization by the newly evaluated points. A relevant application problem formulation together with results for two case studies are presented. Qualitatively similar input trajectories are obtained for different optimization runs due to the stochastic process and the limited number of iterations. All solutions reduce the batch time significantly. © 2019
Název v anglickém jazyce
Dynamic optimization of an emulsion copolymerization process for product quality using a deterministic kinetic model with embedded Monte Carlo simulations
Popis výsledku anglicky
We present the dynamic optimization of an emulsion copolymerization process described by a deterministic kinetic ordinary differential equation model including a stochastic Monte Carlo submodel, describing the growth of polymer chains within particles. For the considered semi-batch operation, the time dependent input trajectories for monomer and initiator flow rates are optimized along with the isothermal reactor temperature. We use the surrogate-model-based optimizer MATSuMoTo for the optimization to avoid the need to compute derivatives of the stochastic model. Radial basis functions with linear polynomial tails are selected as surrogate functions which are updated during optimization by the newly evaluated points. A relevant application problem formulation together with results for two case studies are presented. Qualitatively similar input trajectories are obtained for different optimization runs due to the stochastic process and the limited number of iterations. All solutions reduce the batch time significantly. © 2019
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & CHEMICAL ENGINEERING
ISSN
0098-1354
e-ISSN
—
Svazek periodika
130
Číslo periodika v rámci svazku
2. listopad 2019
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000489333200016
EID výsledku v databázi Scopus
2-s2.0-85072187729