Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mini-batch Stochastic Subgradient for Functional Constrained Optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00365965" target="_blank" >RIV/68407700:21230/24:00365965 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1080/02331934.2023.2189015" target="_blank" >https://doi.org/10.1080/02331934.2023.2189015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/02331934.2023.2189015" target="_blank" >10.1080/02331934.2023.2189015</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mini-batch Stochastic Subgradient for Functional Constrained Optimization

  • Popis výsledku v původním jazyce

    In this paper, we consider finite sum composite optimization problems with many functional constraints. The objective function is expressed as a finite sum of two terms, one of which admits easy computation of (sub)gradients while the other is amenable to proximal evaluations. We assume a generalized bounded gradient condition on the objective which allows us to simultaneously tackle both smooth and nonsmooth problems. We also consider the cases of both with and without a quadratic functional growth property. Further, we assume that each constraint set is given as the level set of a convex but not necessarily a differentiable function. We reformulate the constrained finite sum problem into a stochastic optimization problem for which the stochastic subgradient projection method from Necoara and Singh [Stochastic subgradient projection methods for composite optimization with functional constraints; 2022 Journal of Machine Learning Research, 23, 1-35] specializes in a collection of mini-batch variants, with different mini-batch sizes for the objective function and functional constraints, respectively. More specifically, at each iteration, our algorithm takes a mini-batch stochastic proximal subgradient step aimed at minimizing the objective function and then a subsequent mini-batch subgradient projection step minimizing the feasibility violation. By specializing in different mini-batching strategies, we derive exact expressions for the stepsizes as a function of the mini-batch size and in some cases we also derive insightful stepsize-switching rules which describe when one should switch from a constant to a decreasing stepsize regime. We also prove sublinear convergence rates for the mini-batch subgradient projection algorithm which depend explicitly on the mini-batch sizes and on the properties of the objective function. Numerical results also show a better performance of our mini-batch scheme over its single-batch counterpart.

  • Název v anglickém jazyce

    Mini-batch Stochastic Subgradient for Functional Constrained Optimization

  • Popis výsledku anglicky

    In this paper, we consider finite sum composite optimization problems with many functional constraints. The objective function is expressed as a finite sum of two terms, one of which admits easy computation of (sub)gradients while the other is amenable to proximal evaluations. We assume a generalized bounded gradient condition on the objective which allows us to simultaneously tackle both smooth and nonsmooth problems. We also consider the cases of both with and without a quadratic functional growth property. Further, we assume that each constraint set is given as the level set of a convex but not necessarily a differentiable function. We reformulate the constrained finite sum problem into a stochastic optimization problem for which the stochastic subgradient projection method from Necoara and Singh [Stochastic subgradient projection methods for composite optimization with functional constraints; 2022 Journal of Machine Learning Research, 23, 1-35] specializes in a collection of mini-batch variants, with different mini-batch sizes for the objective function and functional constraints, respectively. More specifically, at each iteration, our algorithm takes a mini-batch stochastic proximal subgradient step aimed at minimizing the objective function and then a subsequent mini-batch subgradient projection step minimizing the feasibility violation. By specializing in different mini-batching strategies, we derive exact expressions for the stepsizes as a function of the mini-batch size and in some cases we also derive insightful stepsize-switching rules which describe when one should switch from a constant to a decreasing stepsize regime. We also prove sublinear convergence rates for the mini-batch subgradient projection algorithm which depend explicitly on the mini-batch sizes and on the properties of the objective function. Numerical results also show a better performance of our mini-batch scheme over its single-batch counterpart.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Optimization

  • ISSN

    0233-1934

  • e-ISSN

    1029-4945

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    27

  • Strana od-do

    2159-2185

  • Kód UT WoS článku

    000950116300001

  • EID výsledku v databázi Scopus

    2-s2.0-85149908573