Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ONLINE CENTERED NLMS ALGORITHM FOR CONCEPT DRIFT COMPENSATION

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43923080" target="_blank" >RIV/60461373:22340/21:43923080 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21220/21:00354756

  • Výsledek na webu

    <a href="http://www.nnw.cz/doi/2021/NNW.2021.31.018.pdf" target="_blank" >http://www.nnw.cz/doi/2021/NNW.2021.31.018.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2021.31.018" target="_blank" >10.14311/NNW.2021.31.018</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ONLINE CENTERED NLMS ALGORITHM FOR CONCEPT DRIFT COMPENSATION

  • Popis výsledku v původním jazyce

    This paper introduces an online centered normalized least mean squares (OC-NLMS) algorithm for linear adaptive finite impulse response (FIR) filters and neural networks. As an extension of the normalized least mean squares (NLMS), the OC-NLMS algorithm features an approach of online input centering according to the introduced filter memory. This key feature can compensate the effect of concept drift in data streams, because such a centering makes the filter independent from the nonzero mean value of signal. This approach is beneficial for applications of adaptive filtering of data with offsets. Furthermore, it can be useful for real-time applications like data stream processing where it is impossible to normalize the measured data with respect to its unknown statistical attributes. The OC-NLMS approach holds superior performance in comparison to the NLMS for data with large offsets and dynamical ranges, due to its input centering feature that deals with the nonzero mean value of the input data. In this paper, the derivation of this algorithm is presented. Several simulation results with artificial and real data are also presented and analysed to demonstrate the capability of the proposed algorithm in comparison with NLMS.

  • Název v anglickém jazyce

    ONLINE CENTERED NLMS ALGORITHM FOR CONCEPT DRIFT COMPENSATION

  • Popis výsledku anglicky

    This paper introduces an online centered normalized least mean squares (OC-NLMS) algorithm for linear adaptive finite impulse response (FIR) filters and neural networks. As an extension of the normalized least mean squares (NLMS), the OC-NLMS algorithm features an approach of online input centering according to the introduced filter memory. This key feature can compensate the effect of concept drift in data streams, because such a centering makes the filter independent from the nonzero mean value of signal. This approach is beneficial for applications of adaptive filtering of data with offsets. Furthermore, it can be useful for real-time applications like data stream processing where it is impossible to normalize the measured data with respect to its unknown statistical attributes. The OC-NLMS approach holds superior performance in comparison to the NLMS for data with large offsets and dynamical ranges, due to its input centering feature that deals with the nonzero mean value of the input data. In this paper, the derivation of this algorithm is presented. Several simulation results with artificial and real data are also presented and analysed to demonstrate the capability of the proposed algorithm in comparison with NLMS.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    13

  • Strana od-do

    "329 "- 341

  • Kód UT WoS článku

    000739166400002

  • EID výsledku v databázi Scopus

    2-s2.0-85123343167