ONLINE CENTERED NLMS ALGORITHM FOR CONCEPT DRIFT COMPENSATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43923080" target="_blank" >RIV/60461373:22340/21:43923080 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/21:00354756
Výsledek na webu
<a href="http://www.nnw.cz/doi/2021/NNW.2021.31.018.pdf" target="_blank" >http://www.nnw.cz/doi/2021/NNW.2021.31.018.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2021.31.018" target="_blank" >10.14311/NNW.2021.31.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ONLINE CENTERED NLMS ALGORITHM FOR CONCEPT DRIFT COMPENSATION
Popis výsledku v původním jazyce
This paper introduces an online centered normalized least mean squares (OC-NLMS) algorithm for linear adaptive finite impulse response (FIR) filters and neural networks. As an extension of the normalized least mean squares (NLMS), the OC-NLMS algorithm features an approach of online input centering according to the introduced filter memory. This key feature can compensate the effect of concept drift in data streams, because such a centering makes the filter independent from the nonzero mean value of signal. This approach is beneficial for applications of adaptive filtering of data with offsets. Furthermore, it can be useful for real-time applications like data stream processing where it is impossible to normalize the measured data with respect to its unknown statistical attributes. The OC-NLMS approach holds superior performance in comparison to the NLMS for data with large offsets and dynamical ranges, due to its input centering feature that deals with the nonzero mean value of the input data. In this paper, the derivation of this algorithm is presented. Several simulation results with artificial and real data are also presented and analysed to demonstrate the capability of the proposed algorithm in comparison with NLMS.
Název v anglickém jazyce
ONLINE CENTERED NLMS ALGORITHM FOR CONCEPT DRIFT COMPENSATION
Popis výsledku anglicky
This paper introduces an online centered normalized least mean squares (OC-NLMS) algorithm for linear adaptive finite impulse response (FIR) filters and neural networks. As an extension of the normalized least mean squares (NLMS), the OC-NLMS algorithm features an approach of online input centering according to the introduced filter memory. This key feature can compensate the effect of concept drift in data streams, because such a centering makes the filter independent from the nonzero mean value of signal. This approach is beneficial for applications of adaptive filtering of data with offsets. Furthermore, it can be useful for real-time applications like data stream processing where it is impossible to normalize the measured data with respect to its unknown statistical attributes. The OC-NLMS approach holds superior performance in comparison to the NLMS for data with large offsets and dynamical ranges, due to its input centering feature that deals with the nonzero mean value of the input data. In this paper, the derivation of this algorithm is presented. Several simulation results with artificial and real data are also presented and analysed to demonstrate the capability of the proposed algorithm in comparison with NLMS.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
"329 "- 341
Kód UT WoS článku
000739166400002
EID výsledku v databázi Scopus
2-s2.0-85123343167