Multiscale modeling and analysis of pressure drop contributions in catalytic filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43923090" target="_blank" >RIV/60461373:22340/21:43923090 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/21:00542871 RIV/49777513:23640/21:43962263
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.iecr.0c05362" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.iecr.0c05362</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.iecr.0c05362" target="_blank" >10.1021/acs.iecr.0c05362</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiscale modeling and analysis of pressure drop contributions in catalytic filters
Popis výsledku v původním jazyce
Catalytic monolith filters with a honeycomb structure represent a key component of modern automotive exhaust gas aftertreatment systems. In this paper, we present and validate a multiscale modeling methodology for the prediction of filter pressure loss depending on the monolith channel geometry as well as the microscopic structure of the wall including catalytic coating. The approach is based on the combination of a 3D pore-scale model of flow through the wall reconstructed from X-ray tomography and a 1D+1D model of the filter channels. Several cordierite and SiC filter samples with varying substrate pore sizes and catalyst distributions are examined. A series of experiments are performed at different gas flow rates and filter lengths in order to validate the model predictions and to distinguish individual pressure drop contributions (inlet and outlet, channel, and wall). The predicted pressure drop shows a strong impact of the coating location and agrees well with the experiments. ©2021 American Chemical Society.
Název v anglickém jazyce
Multiscale modeling and analysis of pressure drop contributions in catalytic filters
Popis výsledku anglicky
Catalytic monolith filters with a honeycomb structure represent a key component of modern automotive exhaust gas aftertreatment systems. In this paper, we present and validate a multiscale modeling methodology for the prediction of filter pressure loss depending on the monolith channel geometry as well as the microscopic structure of the wall including catalytic coating. The approach is based on the combination of a 3D pore-scale model of flow through the wall reconstructed from X-ray tomography and a 1D+1D model of the filter channels. Several cordierite and SiC filter samples with varying substrate pore sizes and catalyst distributions are examined. A series of experiments are performed at different gas flow rates and filter lengths in order to validate the model predictions and to distinguish individual pressure drop contributions (inlet and outlet, channel, and wall). The predicted pressure drop shows a strong impact of the coating location and agrees well with the experiments. ©2021 American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-22173S" target="_blank" >GA19-22173S: Mikrostruktura katalytických filtrů pro čištění automobilových výfukových plynů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Industrial & Engineering Chemistry Research
ISSN
0888-5885
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
6512-6524
Kód UT WoS článku
000651776800012
EID výsledku v databázi Scopus
2-s2.0-85103518245