3D reconstruction and pore-scale modeling of coated catalytic filters for automotive exhaust gas aftertreatment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00497313" target="_blank" >RIV/61388998:_____/19:00497313 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/19:43919370 RIV/49777513:23640/19:43955070
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0920586117308416" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920586117308416</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cattod.2017.12.025" target="_blank" >10.1016/j.cattod.2017.12.025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D reconstruction and pore-scale modeling of coated catalytic filters for automotive exhaust gas aftertreatment
Popis výsledku v původním jazyce
This paper introduces a newly developed methodology for the pore-scale simulation of flow, diffusion and reaction in the coated catalytic filter. 3D morphology of the porous filter wall including the actual distribution of catalytic material is reconstructed from X-ray tomography (XRT) images and further validated with the mercury intrusion porosimetry (MIP). The reconstructed medium is then transformed into simulation mesh for OpenFOAM. Flow through free pores in the substrate as well as through the coated zones is simulated by porousSimpleFoam solver, while an in-house developed solver is used for component diffusion and reactions.nThree cordierite filter samples with different distribution of alumina-based coating ranging from in-wall to onwall are examined. Velocity, pressure and component concentration profiles are calculated enabling the prediction of permeability and component conversion depending on the actual microstructure of the wall. Thensimulation results suggest that the gas predominantly flows through remaining free pores in the filter wall and cracks in the coated layer. The mass transport into the coated domains inside the filter wall is enabled mainly by diffusion. Large domains of compact catalytic coating covering complete channel wall result in a significant increase of pressure drop as the local permeability of the coating is two orders of magnitude smaller than that of bare filter wall.
Název v anglickém jazyce
3D reconstruction and pore-scale modeling of coated catalytic filters for automotive exhaust gas aftertreatment
Popis výsledku anglicky
This paper introduces a newly developed methodology for the pore-scale simulation of flow, diffusion and reaction in the coated catalytic filter. 3D morphology of the porous filter wall including the actual distribution of catalytic material is reconstructed from X-ray tomography (XRT) images and further validated with the mercury intrusion porosimetry (MIP). The reconstructed medium is then transformed into simulation mesh for OpenFOAM. Flow through free pores in the substrate as well as through the coated zones is simulated by porousSimpleFoam solver, while an in-house developed solver is used for component diffusion and reactions.nThree cordierite filter samples with different distribution of alumina-based coating ranging from in-wall to onwall are examined. Velocity, pressure and component concentration profiles are calculated enabling the prediction of permeability and component conversion depending on the actual microstructure of the wall. Thensimulation results suggest that the gas predominantly flows through remaining free pores in the filter wall and cracks in the coated layer. The mass transport into the coated domains inside the filter wall is enabled mainly by diffusion. Large domains of compact catalytic coating covering complete channel wall result in a significant increase of pressure drop as the local permeability of the coating is two orders of magnitude smaller than that of bare filter wall.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1402" target="_blank" >LO1402: CENTEM+</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catalysis Today
ISSN
0920-5861
e-ISSN
—
Svazek periodika
320
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
165-174
Kód UT WoS článku
000448295200018
EID výsledku v databázi Scopus
2-s2.0-85039838260