Effective modeling of coupled reaction and transport inside the catalytic filter wall
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F23%3A43926889" target="_blank" >RIV/60461373:22340/23:43926889 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cej.2023.141847" target="_blank" >https://doi.org/10.1016/j.cej.2023.141847</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2023.141847" target="_blank" >10.1016/j.cej.2023.141847</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effective modeling of coupled reaction and transport inside the catalytic filter wall
Popis výsledku v původním jazyce
A new extension of 1D mathematical model describing diffusion limitation in a catalytic filter wall is proposed. Transport limitations in the flowing gas inside free pores and in the coated catalyst are considered together with a Langmuir–Hinshelwood (LH) reaction kinetics including inhibition effects. Catalytic CO oxidation is investigated as a test reaction both at low and high reactant concentrations. The computed 1D concentration profiles are compared to detailed 3D pore-scale simulations involving the structure of a real filter wall obtained from X-ray tomography (XRT) scans. The best agreement is achieved when both gas-in-pores and intra-catalyst diffusion with LH effectiveness factor are considered in the 1D model. The impact of mass transfer limitations on CO light-off curves is then simulated using a 1D+1D model of the entire monolith filter. The extended model including diffusion limitation in free pores predicts the presence of undesired reactant slip at high flow rates as observed in experiments, which was not possible with the previously published models. © 2023 Elsevier B.V.
Název v anglickém jazyce
Effective modeling of coupled reaction and transport inside the catalytic filter wall
Popis výsledku anglicky
A new extension of 1D mathematical model describing diffusion limitation in a catalytic filter wall is proposed. Transport limitations in the flowing gas inside free pores and in the coated catalyst are considered together with a Langmuir–Hinshelwood (LH) reaction kinetics including inhibition effects. Catalytic CO oxidation is investigated as a test reaction both at low and high reactant concentrations. The computed 1D concentration profiles are compared to detailed 3D pore-scale simulations involving the structure of a real filter wall obtained from X-ray tomography (XRT) scans. The best agreement is achieved when both gas-in-pores and intra-catalyst diffusion with LH effectiveness factor are considered in the 1D model. The impact of mass transfer limitations on CO light-off curves is then simulated using a 1D+1D model of the entire monolith filter. The extended model including diffusion limitation in free pores predicts the presence of undesired reactant slip at high flow rates as observed in experiments, which was not possible with the previously published models. © 2023 Elsevier B.V.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-12227S" target="_blank" >GA22-12227S: Počítačový návrh katalytických filtrů zohledňující vliv zachycených částic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
—
Svazek periodika
461
Číslo periodika v rámci svazku
02
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
141847
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85148668135