The transition to equilibrium in a system with gravitationally interacting particles. II. Gravitational instability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43931387" target="_blank" >RIV/60461373:22340/24:43931387 - isvavai.cz</a>
Výsledek na webu
<a href="https://ttmp.qut.ac.ir/article_713450.html" target="_blank" >https://ttmp.qut.ac.ir/article_713450.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.30511/TTMP.2024.2025173.1023" target="_blank" >10.30511/TTMP.2024.2025173.1023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The transition to equilibrium in a system with gravitationally interacting particles. II. Gravitational instability
Popis výsledku v původním jazyce
The distribution function of systems in equilibrium must have the canonical form of the Gibbs distribution. To substantiate this behavior of systems, attempts have been made for more than 100 years to involve their mechanical behavior. In other words, it seems that a huge number of particles of the medium, as a result of interaction with each other according to dynamic laws, is able to explain the statistical behavior of systems during their transition to equilibrium. Modeling of gravitationally interacting particles is carried out and it is shown that in this case, the distribution function does not evolve to the canonical form. Earlier, the same results were obtained for classical Coulomb plasma. On the other hand, such a statistical effect as relaxation is well described by the dynamic behavior of the system, and the simulation data are in agreement with the known theoretical results obtained in various statistical approaches. This article demonstrates that the well-known phenomenon of gravitational instability is also reproduced in the numerical simulation of a system with gravitationally interacting particles.
Název v anglickém jazyce
The transition to equilibrium in a system with gravitationally interacting particles. II. Gravitational instability
Popis výsledku anglicky
The distribution function of systems in equilibrium must have the canonical form of the Gibbs distribution. To substantiate this behavior of systems, attempts have been made for more than 100 years to involve their mechanical behavior. In other words, it seems that a huge number of particles of the medium, as a result of interaction with each other according to dynamic laws, is able to explain the statistical behavior of systems during their transition to equilibrium. Modeling of gravitationally interacting particles is carried out and it is shown that in this case, the distribution function does not evolve to the canonical form. Earlier, the same results were obtained for classical Coulomb plasma. On the other hand, such a statistical effect as relaxation is well described by the dynamic behavior of the system, and the simulation data are in agreement with the known theoretical results obtained in various statistical approaches. This article demonstrates that the well-known phenomenon of gravitational instability is also reproduced in the numerical simulation of a system with gravitationally interacting particles.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions in Theoretical and Mathematical Physics
ISSN
3041-8984
e-ISSN
3041-8984
Svazek periodika
1
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
IR - Íránská islámská republika
Počet stran výsledku
9
Strana od-do
50-58
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—