Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The transition to equilibrium in a system with gravitationally interacting particles. II. Gravitational instability

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43931387" target="_blank" >RIV/60461373:22340/24:43931387 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ttmp.qut.ac.ir/article_713450.html" target="_blank" >https://ttmp.qut.ac.ir/article_713450.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.30511/TTMP.2024.2025173.1023" target="_blank" >10.30511/TTMP.2024.2025173.1023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The transition to equilibrium in a system with gravitationally interacting particles. II. Gravitational instability

  • Popis výsledku v původním jazyce

    The distribution function of systems in equilibrium must have the canonical form of the Gibbs distribution. To substantiate this behavior of systems, attempts have been made for more than 100 years to involve their mechanical behavior. In other words, it seems that a huge number of particles of the medium, as a result of interaction with each other according to dynamic laws, is able to explain the statistical behavior of systems during their transition to equilibrium. Modeling of gravitationally interacting particles is carried out and it is shown that in this case, the distribution function does not evolve to the canonical form. Earlier, the same results were obtained for classical Coulomb plasma. On the other hand, such a statistical effect as relaxation is well described by the dynamic behavior of the system, and the simulation data are in agreement with the known theoretical results obtained in various statistical approaches. This article demonstrates that the well-known phenomenon of gravitational instability is also reproduced in the numerical simulation of a system with gravitationally interacting particles.

  • Název v anglickém jazyce

    The transition to equilibrium in a system with gravitationally interacting particles. II. Gravitational instability

  • Popis výsledku anglicky

    The distribution function of systems in equilibrium must have the canonical form of the Gibbs distribution. To substantiate this behavior of systems, attempts have been made for more than 100 years to involve their mechanical behavior. In other words, it seems that a huge number of particles of the medium, as a result of interaction with each other according to dynamic laws, is able to explain the statistical behavior of systems during their transition to equilibrium. Modeling of gravitationally interacting particles is carried out and it is shown that in this case, the distribution function does not evolve to the canonical form. Earlier, the same results were obtained for classical Coulomb plasma. On the other hand, such a statistical effect as relaxation is well described by the dynamic behavior of the system, and the simulation data are in agreement with the known theoretical results obtained in various statistical approaches. This article demonstrates that the well-known phenomenon of gravitational instability is also reproduced in the numerical simulation of a system with gravitationally interacting particles.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10303 - Particles and field physics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transactions in Theoretical and Mathematical Physics

  • ISSN

    3041-8984

  • e-ISSN

    3041-8984

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    IR - Íránská islámská republika

  • Počet stran výsledku

    9

  • Strana od-do

    50-58

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus