Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00538076" target="_blank" >RIV/61388955:_____/20:00538076 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0315897" target="_blank" >http://hdl.handle.net/11104/0315897</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0015042" target="_blank" >10.1063/5.0015042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression
Popis výsledku v původním jazyce
We study the dependence of kinetic energy densities (KEDs) on density-dependent variables that have been suggested in previous works on kinetic energy functionals for orbital-free density functional theory. We focus on the role of data distribution and on data and regressor selection. We compare unweighted and weighted linear and Gaussian process regressions of KEDs for light metals and a semiconductor. We find that good quality linear regression resulting in good energy-volume dependence is possible over density-dependent variables suggested in previous literature studies. This is achieved with weighted fitting based on the KED histogram. With Gaussian process regressions, excellent KED fit quality well exceeding that of linear regressions is obtained as well as a good energy-volume dependence, which was somewhat better than that of best linear regressions. We find that while the use of the effective potential as a descriptor improves linear KED fitting, it does not improve the quality of the energy-volume dependence with linear regressions but substantially improves it with Gaussian process regression. Gaussian process regression is also able to perform well without data weighting.
Název v anglickém jazyce
Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression
Popis výsledku anglicky
We study the dependence of kinetic energy densities (KEDs) on density-dependent variables that have been suggested in previous works on kinetic energy functionals for orbital-free density functional theory. We focus on the role of data distribution and on data and regressor selection. We compare unweighted and weighted linear and Gaussian process regressions of KEDs for light metals and a semiconductor. We find that good quality linear regression resulting in good energy-volume dependence is possible over density-dependent variables suggested in previous literature studies. This is achieved with weighted fitting based on the KED histogram. With Gaussian process regressions, excellent KED fit quality well exceeding that of linear regressions is obtained as well as a good energy-volume dependence, which was somewhat better than that of best linear regressions. We find that while the use of the effective potential as a descriptor improves linear KED fitting, it does not improve the quality of the energy-volume dependence with linear regressions but substantially improves it with Gaussian process regression. Gaussian process regression is also able to perform well without data weighting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Svazek periodika
153
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
074104
Kód UT WoS článku
000563905200002
EID výsledku v databázi Scopus
2-s2.0-85089794538