Crystallization of 2D Hybrid Organic-Inorganic Perovskites Templated by Conductive Substrates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00539487" target="_blank" >RIV/61388955:_____/21:00539487 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0317223" target="_blank" >http://hdl.handle.net/11104/0317223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202009007" target="_blank" >10.1002/adfm.202009007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Crystallization of 2D Hybrid Organic-Inorganic Perovskites Templated by Conductive Substrates
Popis výsledku v původním jazyce
2D hybrid organic-inorganic perovskites are valued in optoelectronic applications for their tunable bandgap and excellent moisture and irradiation stability. These properties stem from both the chemical composition and crystallinity of the layer formed. Defects in the lattice, impurities, and crystal grain boundaries generally introduce trap states and surface energy pinning, limiting the ultimate performance of the perovskite. Hence, an in-depth understanding of the crystallization process is indispensable. Here, a kinetic and thermodynamic study of 2D perovskite layer crystallization on transparent conductive substrates are provided-fluorine-doped tin oxide and graphene. Due to markedly different surface structure and chemistry, the two substrates interact differently with the perovskite layer. A time-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor the crystallization on the two substrates. Molecular dynamics simulations are employed to explain the experimental data and to rationalize the perovskite layer formation. The findings assist substrate selection based on the required film morphology, revealing the structural dynamics during the crystallization process, thus helping to tackle the technological challenges of structure formation of 2D perovskites for optoelectronic devices.
Název v anglickém jazyce
Crystallization of 2D Hybrid Organic-Inorganic Perovskites Templated by Conductive Substrates
Popis výsledku anglicky
2D hybrid organic-inorganic perovskites are valued in optoelectronic applications for their tunable bandgap and excellent moisture and irradiation stability. These properties stem from both the chemical composition and crystallinity of the layer formed. Defects in the lattice, impurities, and crystal grain boundaries generally introduce trap states and surface energy pinning, limiting the ultimate performance of the perovskite. Hence, an in-depth understanding of the crystallization process is indispensable. Here, a kinetic and thermodynamic study of 2D perovskite layer crystallization on transparent conductive substrates are provided-fluorine-doped tin oxide and graphene. Due to markedly different surface structure and chemistry, the two substrates interact differently with the perovskite layer. A time-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor the crystallization on the two substrates. Molecular dynamics simulations are employed to explain the experimental data and to rationalize the perovskite layer formation. The findings assist substrate selection based on the required film morphology, revealing the structural dynamics during the crystallization process, thus helping to tackle the technological challenges of structure formation of 2D perovskites for optoelectronic devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
31
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
2009007
Kód UT WoS článku
000608841300001
EID výsledku v databázi Scopus
2-s2.0-85100198382