Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00541300" target="_blank" >RIV/61388955:_____/21:00541300 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/21:PU140649
Výsledek na webu
<a href="http://hdl.handle.net/11104/0318881" target="_blank" >http://hdl.handle.net/11104/0318881</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0040522" target="_blank" >10.1063/5.0040522</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy
Popis výsledku v původním jazyce
Suspended membranes of two-dimensional (2D) materials are of interest for many applications. Much of their characterization relies on scanning probe microscopy (SPM) techniques such as atomic force microscopy (AFM) or scanning tunneling microscopy (STM). Unlike rigid samples, the suspended atomically thin 2D membranes are, however, flexible and do not remain mechanically undisturbed during SPM measurements. Local deformations can occur at the location of the scanning tip and thus result in measurements that misrepresent actual membrane topography and nanomechanical properties. Exact levels of such SPM tip-induced deformations in 2D membranes remain largely unknown, as they are to date only indirectly accessible via dual probe microscope concepts that either are not mechanically independent (e.g., SPM-SPM setups resulting in complicated imaging crosstalk) or suffer from intrinsically limited lateral resolution (e.g., optical far-field techniques as the second probe). Circumventing these shortcomings, we here demonstrate that by coupling an AFM with a scanning electron microscope (SEM) as the second, mechanically independent probe, we can directly and in situ visualize by SEM at high resolution 2D membrane deformations that result from controllable AFM tip manipulations in the nN range. Employing few-layer graphene as model membranes, we discuss the experimental realization of our coupled in situ AFM-SEM approach.
Název v anglickém jazyce
Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy
Popis výsledku anglicky
Suspended membranes of two-dimensional (2D) materials are of interest for many applications. Much of their characterization relies on scanning probe microscopy (SPM) techniques such as atomic force microscopy (AFM) or scanning tunneling microscopy (STM). Unlike rigid samples, the suspended atomically thin 2D membranes are, however, flexible and do not remain mechanically undisturbed during SPM measurements. Local deformations can occur at the location of the scanning tip and thus result in measurements that misrepresent actual membrane topography and nanomechanical properties. Exact levels of such SPM tip-induced deformations in 2D membranes remain largely unknown, as they are to date only indirectly accessible via dual probe microscope concepts that either are not mechanically independent (e.g., SPM-SPM setups resulting in complicated imaging crosstalk) or suffer from intrinsically limited lateral resolution (e.g., optical far-field techniques as the second probe). Circumventing these shortcomings, we here demonstrate that by coupling an AFM with a scanning electron microscope (SEM) as the second, mechanically independent probe, we can directly and in situ visualize by SEM at high resolution 2D membrane deformations that result from controllable AFM tip manipulations in the nN range. Employing few-layer graphene as model membranes, we discuss the experimental realization of our coupled in situ AFM-SEM approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/8J18AT005" target="_blank" >8J18AT005: Charakterizace reakcí dvourozměrných materiálů na vnější vlivy pomocí pokročilých in-situ technik</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Physics Letters
ISSN
0003-6951
e-ISSN
1077-3118
Svazek periodika
118
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
103104
Kód UT WoS článku
000628793200002
EID výsledku v databázi Scopus
2-s2.0-85102489169