Probing the local dielectric function of WS2 on an Au substrate by near field optical microscopy operating in the visible spectral range
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00547356" target="_blank" >RIV/61388955:_____/22:00547356 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0323598" target="_blank" >http://hdl.handle.net/11104/0323598</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2021.151672" target="_blank" >10.1016/j.apsusc.2021.151672</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probing the local dielectric function of WS2 on an Au substrate by near field optical microscopy operating in the visible spectral range
Popis výsledku v původním jazyce
The optoelectronic properties of nanoscale systems such as carbon nanotubes (CNTs), graphene nanoribbons and transition metal dichalcogenides (TMDCs) are determined by their dielectric function. This complex, frequency dependent function is affected by excitonic resonances, charge transfer effects, doping, sample stress and strain, and surface roughness. Knowledge of the dielectric function grants access to a material's transmissive and absorptive characteristics. Here we use the dual scanning near field optical microscope (dual s-SNOM) for imaging local dielectric variations and extracting dielectric function values using a pre-established mathematical inversion method. To demonstrate our approach, we studied a monolayer of WS2 on bulk Au and identified two areas with differing levels of charge transfer. The experiments highlight a further advantage of the technique: the dielectric function of contaminated samples can be measured, as dirty areas can be easily identified and excluded for the calculation, being important especially for exfoliated 2D materials (Rodriguez et al., 2021). Our measurements are corroborated by atomic force microscopy (AFM), Kelvin force probe microscopy (KPFM), photoluminescence (PL) intensity mapping, and tip enhanced photoluminescence (TEPL). We extracted local dielectric variations from s-SNOM images and confirmed the reliability of the obtained values with spectroscopic imaging ellipsometry (SIE) measurements.
Název v anglickém jazyce
Probing the local dielectric function of WS2 on an Au substrate by near field optical microscopy operating in the visible spectral range
Popis výsledku anglicky
The optoelectronic properties of nanoscale systems such as carbon nanotubes (CNTs), graphene nanoribbons and transition metal dichalcogenides (TMDCs) are determined by their dielectric function. This complex, frequency dependent function is affected by excitonic resonances, charge transfer effects, doping, sample stress and strain, and surface roughness. Knowledge of the dielectric function grants access to a material's transmissive and absorptive characteristics. Here we use the dual scanning near field optical microscope (dual s-SNOM) for imaging local dielectric variations and extracting dielectric function values using a pre-established mathematical inversion method. To demonstrate our approach, we studied a monolayer of WS2 on bulk Au and identified two areas with differing levels of charge transfer. The experiments highlight a further advantage of the technique: the dielectric function of contaminated samples can be measured, as dirty areas can be easily identified and excluded for the calculation, being important especially for exfoliated 2D materials (Rodriguez et al., 2021). Our measurements are corroborated by atomic force microscopy (AFM), Kelvin force probe microscopy (KPFM), photoluminescence (PL) intensity mapping, and tip enhanced photoluminescence (TEPL). We extracted local dielectric variations from s-SNOM images and confirmed the reliability of the obtained values with spectroscopic imaging ellipsometry (SIE) measurements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Surface Science
ISSN
0169-4332
e-ISSN
1873-5584
Svazek periodika
574
Číslo periodika v rámci svazku
FEB 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
151672
Kód UT WoS článku
000727808400001
EID výsledku v databázi Scopus
2-s2.0-85117701028