Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F17%3A00478161" target="_blank" >RIV/61388963:_____/17:00478161 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.jpcb.7b03102" target="_blank" >http://dx.doi.org/10.1021/acs.jpcb.7b03102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.7b03102" target="_blank" >10.1021/acs.jpcb.7b03102</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent
Popis výsledku v původním jazyce
Enzymes are widely used in nonaqueous solvents to catalyze non-natural reactions. While experimental measurements showed that the solvent nature has a strong effect on the reaction kinetics, the molecular details of the catalytic mechanism in nonaqueous solvents have remained largely elusive. Here we study the transesterification reaction catalyzed by the paradigm subtilisin Carlsberg serine protease in an organic apolar solvent. The rate-limiting acylation step involves a proton transfer between active-site residues and the nucleophilic attack of the substrate to form a tetrahedral intermediate. We design the first coupled valence-bond state model that simultaneously describes both reactions in the enzymatic active site. We develop a new systematic procedure to parametrize this model on high-level ab initio QM/MM free energy calculations that account for the molecular details of the active site and for both substrate and protein conformational fluctuations. Our calculations show that the reaction energy barrier changes dramatically with the solvent and protein conformational fluctuations. We find that the mechanism of the tetrahedral intermediate formation during the acylation step is similar to that determined under aqueous conditions, and that the proton transfer, and nucleophilic attack reactions occur concertedly. We identify the reaction coordinate to be mostly due to the rearrangement of some residual water molecules close to the active site.
Název v anglickém jazyce
Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent
Popis výsledku anglicky
Enzymes are widely used in nonaqueous solvents to catalyze non-natural reactions. While experimental measurements showed that the solvent nature has a strong effect on the reaction kinetics, the molecular details of the catalytic mechanism in nonaqueous solvents have remained largely elusive. Here we study the transesterification reaction catalyzed by the paradigm subtilisin Carlsberg serine protease in an organic apolar solvent. The rate-limiting acylation step involves a proton transfer between active-site residues and the nucleophilic attack of the substrate to form a tetrahedral intermediate. We design the first coupled valence-bond state model that simultaneously describes both reactions in the enzymatic active site. We develop a new systematic procedure to parametrize this model on high-level ab initio QM/MM free energy calculations that account for the molecular details of the active site and for both substrate and protein conformational fluctuations. Our calculations show that the reaction energy barrier changes dramatically with the solvent and protein conformational fluctuations. We find that the mechanism of the tetrahedral intermediate formation during the acylation step is similar to that determined under aqueous conditions, and that the proton transfer, and nucleophilic attack reactions occur concertedly. We identify the reaction coordinate to be mostly due to the rearrangement of some residual water molecules close to the active site.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
—
Svazek periodika
121
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
7027-7041
Kód UT WoS článku
000406726700005
EID výsledku v databázi Scopus
2-s2.0-85026553265