Amyloid beta Fibril Elongation by Monomers Involves Disorder at the Tip
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F17%3A00481007" target="_blank" >RIV/61388963:_____/17:00481007 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.jctc.7b00662" target="_blank" >http://dx.doi.org/10.1021/acs.jctc.7b00662</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.7b00662" target="_blank" >10.1021/acs.jctc.7b00662</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Amyloid beta Fibril Elongation by Monomers Involves Disorder at the Tip
Popis výsledku v původním jazyce
The growth of amyloid fibrils from A beta(1-42) peptide, one of the key pathogenic players in Alzheimer's disease, is believed to follow a nucleation-elongation mechanism. Fibril elongation is often described as a ”dock-lock” procedure, where a disordered monomer adsorbs to an existing fibril in a relatively fast process (docking), followed by a slower conformational transition toward the ordered state of the template (locking). Here, we use molecular dynamics simulations of an ordered pentamer of A beta 42 at fully atomistic resolution, which includes solvent, to characterize the elongation process. We construct a Markov state model from an ensemble of short trajectories generated by an advanced sampling algorithm that efficiently diversifies a subset of the system without any bias forces. This subset corresponds to selected dihedral angles of the peptide chain at the fibril tip favored to be the fast growing one experimentally. From the network model, we extract distinct locking pathways covering time scales in the high microsecond regime. Slow steps are associated with the exchange of hydrophobic contacts, between nonnative and native intermolecular contacts as well as between intra- and intermolecular ones. The N-terminal segments, which are disordered in fibrils and typically considered inert, are able to shield the lateral interfaces of the pentamer. We conclude by discussing our findings in the context of a refined dock-lock model of A beta fibril elongation, which involves structural disorder for more than one monomer at the growing tip.
Název v anglickém jazyce
Amyloid beta Fibril Elongation by Monomers Involves Disorder at the Tip
Popis výsledku anglicky
The growth of amyloid fibrils from A beta(1-42) peptide, one of the key pathogenic players in Alzheimer's disease, is believed to follow a nucleation-elongation mechanism. Fibril elongation is often described as a ”dock-lock” procedure, where a disordered monomer adsorbs to an existing fibril in a relatively fast process (docking), followed by a slower conformational transition toward the ordered state of the template (locking). Here, we use molecular dynamics simulations of an ordered pentamer of A beta 42 at fully atomistic resolution, which includes solvent, to characterize the elongation process. We construct a Markov state model from an ensemble of short trajectories generated by an advanced sampling algorithm that efficiently diversifies a subset of the system without any bias forces. This subset corresponds to selected dihedral angles of the peptide chain at the fibril tip favored to be the fast growing one experimentally. From the network model, we extract distinct locking pathways covering time scales in the high microsecond regime. Slow steps are associated with the exchange of hydrophobic contacts, between nonnative and native intermolecular contacts as well as between intra- and intermolecular ones. The N-terminal segments, which are disordered in fibrils and typically considered inert, are able to shield the lateral interfaces of the pentamer. We conclude by discussing our findings in the context of a refined dock-lock model of A beta fibril elongation, which involves structural disorder for more than one monomer at the growing tip.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
5117-5130
Kód UT WoS článku
000412965700043
EID výsledku v databázi Scopus
2-s2.0-85032217719