What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00580275" target="_blank" >RIV/61388963:_____/24:00580275 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10478140
Výsledek na webu
<a href="https://doi.org/10.1039/D3SC04960D" target="_blank" >https://doi.org/10.1039/D3SC04960D</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3sc04960d" target="_blank" >10.1039/d3sc04960d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments
Popis výsledku v původním jazyce
Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in alpha-helices, and only 3% occurs in the extended parts of proteins (typically beta-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'alpha-helical' in proteins), KAM(alpha), ALA(alpha), DIC(alpha), EKF(alpha), IYI(pro-beta-sheet or more generally, pro-extended), and VIV(beta), and the reference alpha-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal “folding seeds“. Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.
Název v anglickém jazyce
What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments
Popis výsledku anglicky
Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in alpha-helices, and only 3% occurs in the extended parts of proteins (typically beta-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'alpha-helical' in proteins), KAM(alpha), ALA(alpha), DIC(alpha), EKF(alpha), IYI(pro-beta-sheet or more generally, pro-extended), and VIV(beta), and the reference alpha-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal “folding seeds“. Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Science
ISSN
2041-6520
e-ISSN
2041-6539
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
594-608
Kód UT WoS článku
001119543500001
EID výsledku v databázi Scopus
2-s2.0-85179778467