Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00585169" target="_blank" >RIV/61388963:_____/24:00585169 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/24:10483701

  • Výsledek na webu

    <a href="https://doi.org/10.1021/acscatal.4c00966" target="_blank" >https://doi.org/10.1021/acscatal.4c00966</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.4c00966" target="_blank" >10.1021/acscatal.4c00966</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene

  • Popis výsledku v původním jazyce

    Palladium-catalyzed carbonylation is a versatile method for the synthesis of various aldehydes, esters, lactones, or lactams. Alkoxycarbonylation of alkenes with carbon monoxide and alcohol produces either saturated or unsaturated esters as a result of two distinct catalytic cycles. The existing literature presents an inconsistent account of the procedures favoring oxidative carbonylation products. In this study, we have monitored the intermediates featured in both catalytic cycles of the methoxycarbonylation of styrene PhCH & boxH, CH2 as a model substrate, including all short-lived intermediates, using mass spectrometry. Comparing the reaction kinetics of the intermediates in both cycles in the same reaction mixture shows that the reaction proceeding via alkoxy intermediate [Pd-II]-OR, which gives rise to the unsaturated product PhCH & boxH, CHCO2Me, is faster. However, with an advancing reaction time, the gradually changing reaction conditions begin to favor the catalytic cycle dominated by palladium hydride [Pd-II]-H and alkyl intermediates, affording the saturated products PhCH2CH2CO2Me and PhCH(CO2Me)CH3 preferentially. The role of the oxidant proved to be crucial: using p-benzoquinone results in a gradual decrease of the pH during the reaction, swaying the system from oxidative conditions toward the palladium hydride cycle. By contrast, copper(II) acetate as an oxidant guards the pH within the 5-7 range and facilitates the formation of the alkoxy palladium complex [Pd-II]-OR, which favors the oxidative reaction producing PhCH & boxH,CHCO2Me with high selectivity. Hence, it is the oxidant, rather than the catalyst, that controls the reaction outcome by a mechanistic switch. Unraveling these principles broadens the scope for developing alkoxycarbonylation reactions and their application in organic synthesis.

  • Název v anglickém jazyce

    Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene

  • Popis výsledku anglicky

    Palladium-catalyzed carbonylation is a versatile method for the synthesis of various aldehydes, esters, lactones, or lactams. Alkoxycarbonylation of alkenes with carbon monoxide and alcohol produces either saturated or unsaturated esters as a result of two distinct catalytic cycles. The existing literature presents an inconsistent account of the procedures favoring oxidative carbonylation products. In this study, we have monitored the intermediates featured in both catalytic cycles of the methoxycarbonylation of styrene PhCH & boxH, CH2 as a model substrate, including all short-lived intermediates, using mass spectrometry. Comparing the reaction kinetics of the intermediates in both cycles in the same reaction mixture shows that the reaction proceeding via alkoxy intermediate [Pd-II]-OR, which gives rise to the unsaturated product PhCH & boxH, CHCO2Me, is faster. However, with an advancing reaction time, the gradually changing reaction conditions begin to favor the catalytic cycle dominated by palladium hydride [Pd-II]-H and alkyl intermediates, affording the saturated products PhCH2CH2CO2Me and PhCH(CO2Me)CH3 preferentially. The role of the oxidant proved to be crucial: using p-benzoquinone results in a gradual decrease of the pH during the reaction, swaying the system from oxidative conditions toward the palladium hydride cycle. By contrast, copper(II) acetate as an oxidant guards the pH within the 5-7 range and facilitates the formation of the alkoxy palladium complex [Pd-II]-OR, which favors the oxidative reaction producing PhCH & boxH,CHCO2Me with high selectivity. Hence, it is the oxidant, rather than the catalyst, that controls the reaction outcome by a mechanistic switch. Unraveling these principles broadens the scope for developing alkoxycarbonylation reactions and their application in organic synthesis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10401 - Organic chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

    2155-5435

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    5710-5719

  • Kód UT WoS článku

    001194996300001

  • EID výsledku v databázi Scopus

    2-s2.0-85189558674