Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00585169" target="_blank" >RIV/61388963:_____/24:00585169 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10483701
Výsledek na webu
<a href="https://doi.org/10.1021/acscatal.4c00966" target="_blank" >https://doi.org/10.1021/acscatal.4c00966</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acscatal.4c00966" target="_blank" >10.1021/acscatal.4c00966</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene
Popis výsledku v původním jazyce
Palladium-catalyzed carbonylation is a versatile method for the synthesis of various aldehydes, esters, lactones, or lactams. Alkoxycarbonylation of alkenes with carbon monoxide and alcohol produces either saturated or unsaturated esters as a result of two distinct catalytic cycles. The existing literature presents an inconsistent account of the procedures favoring oxidative carbonylation products. In this study, we have monitored the intermediates featured in both catalytic cycles of the methoxycarbonylation of styrene PhCH & boxH, CH2 as a model substrate, including all short-lived intermediates, using mass spectrometry. Comparing the reaction kinetics of the intermediates in both cycles in the same reaction mixture shows that the reaction proceeding via alkoxy intermediate [Pd-II]-OR, which gives rise to the unsaturated product PhCH & boxH, CHCO2Me, is faster. However, with an advancing reaction time, the gradually changing reaction conditions begin to favor the catalytic cycle dominated by palladium hydride [Pd-II]-H and alkyl intermediates, affording the saturated products PhCH2CH2CO2Me and PhCH(CO2Me)CH3 preferentially. The role of the oxidant proved to be crucial: using p-benzoquinone results in a gradual decrease of the pH during the reaction, swaying the system from oxidative conditions toward the palladium hydride cycle. By contrast, copper(II) acetate as an oxidant guards the pH within the 5-7 range and facilitates the formation of the alkoxy palladium complex [Pd-II]-OR, which favors the oxidative reaction producing PhCH & boxH,CHCO2Me with high selectivity. Hence, it is the oxidant, rather than the catalyst, that controls the reaction outcome by a mechanistic switch. Unraveling these principles broadens the scope for developing alkoxycarbonylation reactions and their application in organic synthesis.
Název v anglickém jazyce
Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene
Popis výsledku anglicky
Palladium-catalyzed carbonylation is a versatile method for the synthesis of various aldehydes, esters, lactones, or lactams. Alkoxycarbonylation of alkenes with carbon monoxide and alcohol produces either saturated or unsaturated esters as a result of two distinct catalytic cycles. The existing literature presents an inconsistent account of the procedures favoring oxidative carbonylation products. In this study, we have monitored the intermediates featured in both catalytic cycles of the methoxycarbonylation of styrene PhCH & boxH, CH2 as a model substrate, including all short-lived intermediates, using mass spectrometry. Comparing the reaction kinetics of the intermediates in both cycles in the same reaction mixture shows that the reaction proceeding via alkoxy intermediate [Pd-II]-OR, which gives rise to the unsaturated product PhCH & boxH, CHCO2Me, is faster. However, with an advancing reaction time, the gradually changing reaction conditions begin to favor the catalytic cycle dominated by palladium hydride [Pd-II]-H and alkyl intermediates, affording the saturated products PhCH2CH2CO2Me and PhCH(CO2Me)CH3 preferentially. The role of the oxidant proved to be crucial: using p-benzoquinone results in a gradual decrease of the pH during the reaction, swaying the system from oxidative conditions toward the palladium hydride cycle. By contrast, copper(II) acetate as an oxidant guards the pH within the 5-7 range and facilitates the formation of the alkoxy palladium complex [Pd-II]-OR, which favors the oxidative reaction producing PhCH & boxH,CHCO2Me with high selectivity. Hence, it is the oxidant, rather than the catalyst, that controls the reaction outcome by a mechanistic switch. Unraveling these principles broadens the scope for developing alkoxycarbonylation reactions and their application in organic synthesis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10401 - Organic chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Catalysis
ISSN
2155-5435
e-ISSN
2155-5435
Svazek periodika
14
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
5710-5719
Kód UT WoS článku
001194996300001
EID výsledku v databázi Scopus
2-s2.0-85189558674