Normalization techniques for univariate biostatistics analysis (Conference Paper)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F18%3A00491880" target="_blank" >RIV/61388971:_____/18:00491880 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Normalization techniques for univariate biostatistics analysis (Conference Paper)
Popis výsledku v původním jazyce
The biostatistic processing of metabolomic data includes a number of mathematical and statistical methods. The series of preprocessing steps is necessary applied before application of the univariate or multivariate approaches for identifications of statistical significant factor. The goal of this article is using simulation Monte Carlo approach for analysis of influence of normalizations processes on the results of univariate statistical methods. In our study four methods of normalization are compared - normalization by the area under the curve (AUC), normalization to creatinine, quantile normalization and probabilistic quotient normalization (PQN). The results of simulation experiments studies have shown that PQN, quantile normalization and creatinine normalization are more robust than AUC normalization, especially in case a small number of metabolites with a large fold change is presented. From a practical point of view PQN method is recomended as the robust normalization procedure with the broad application and easy data interpretation.
Název v anglickém jazyce
Normalization techniques for univariate biostatistics analysis (Conference Paper)
Popis výsledku anglicky
The biostatistic processing of metabolomic data includes a number of mathematical and statistical methods. The series of preprocessing steps is necessary applied before application of the univariate or multivariate approaches for identifications of statistical significant factor. The goal of this article is using simulation Monte Carlo approach for analysis of influence of normalizations processes on the results of univariate statistical methods. In our study four methods of normalization are compared - normalization by the area under the curve (AUC), normalization to creatinine, quantile normalization and probabilistic quotient normalization (PQN). The results of simulation experiments studies have shown that PQN, quantile normalization and creatinine normalization are more robust than AUC normalization, especially in case a small number of metabolites with a large fold change is presented. From a practical point of view PQN method is recomended as the robust normalization procedure with the broad application and easy data interpretation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1509" target="_blank" >LO1509: Pražská infrastruktura pro strukturní biologii a metabolomiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
17th Conference on Applied Mathematics, APLIMAT 2018, Bratislava, Slovakia, 6 February 2018 through 8 February 2018, Code 135345
ISBN
978-802274765-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
925-932
Název nakladatele
Slovak University of Technology in Bratislava
Místo vydání
Bratislava
Místo konání akce
Bratislava
Datum konání akce
6. 2. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—