Normalization techniques for PARAFAC modeling of urine metabolomic data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159173" target="_blank" >RIV/61989592:15310/16:33159173 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15110/16:33159173
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s11306-016-1059-9" target="_blank" >http://link.springer.com/article/10.1007/s11306-016-1059-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11306-016-1059-9" target="_blank" >10.1007/s11306-016-1059-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Normalization techniques for PARAFAC modeling of urine metabolomic data
Popis výsledku v původním jazyce
The concentrations of metabolites in urine (one of the body fluids used in metabolomics studies) are affected by hydration status of an individual, resulting in dilution differences. This requires therefore normalization of the data to correct for such differences. Two normalization techniques are commonly applied to urine samples prior to their further statistical analysis. First, AUC normalization aims to normalize a group of signals with peaks by standardizing the area under the curve (AUC) within a sample to the median, mean or any other proper representation of the amount of dilution. The second approach uses specific end-product metabolites such as creatinine and all intensities within a sample are expressed relative to the creatinine intensity. Another way of looking at urine metabolomics data is by realizing that the ratios between peak intensities are the information-carrying features. This opens up possibilities to use another class of data analysis techniques designed to deal with such ratios: compositional data analysis. The aim of this paper is to develop PARAFAC modeling of three-way urine metabolomics data in the context of compositional data analysis and compare this with standard normalization techniques.In the compositional data analysis approach, special coordinate systems are defined to deal with the ratio problem. In essence, it comes down to using other distance measures than the Euclidian Distance that is used in the conventional analysis of metabolomic data. We illustrate using this type of approach in combination with three-way methods (i.e. PARAFAC) of a longitudinal urine metabolomics study and two simulations. In both cases, the advantage of the compositional approach is established in terms of improved interpretability of the scores and loadings of the PARAFAC model. For urine metabolomics studies, we advocate the use of compositional data analysis approaches. They are easy to use, well established and proof to give reliable results.
Název v anglickém jazyce
Normalization techniques for PARAFAC modeling of urine metabolomic data
Popis výsledku anglicky
The concentrations of metabolites in urine (one of the body fluids used in metabolomics studies) are affected by hydration status of an individual, resulting in dilution differences. This requires therefore normalization of the data to correct for such differences. Two normalization techniques are commonly applied to urine samples prior to their further statistical analysis. First, AUC normalization aims to normalize a group of signals with peaks by standardizing the area under the curve (AUC) within a sample to the median, mean or any other proper representation of the amount of dilution. The second approach uses specific end-product metabolites such as creatinine and all intensities within a sample are expressed relative to the creatinine intensity. Another way of looking at urine metabolomics data is by realizing that the ratios between peak intensities are the information-carrying features. This opens up possibilities to use another class of data analysis techniques designed to deal with such ratios: compositional data analysis. The aim of this paper is to develop PARAFAC modeling of three-way urine metabolomics data in the context of compositional data analysis and compare this with standard normalization techniques.In the compositional data analysis approach, special coordinate systems are defined to deal with the ratio problem. In essence, it comes down to using other distance measures than the Euclidian Distance that is used in the conventional analysis of metabolomic data. We illustrate using this type of approach in combination with three-way methods (i.e. PARAFAC) of a longitudinal urine metabolomics study and two simulations. In both cases, the advantage of the compositional approach is established in terms of improved interpretability of the scores and loadings of the PARAFAC model. For urine metabolomics studies, we advocate the use of compositional data analysis approaches. They are easy to use, well established and proof to give reliable results.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Metabolomics
ISSN
1573-3882
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"nestránkováno"
Kód UT WoS článku
000379508500009
EID výsledku v databázi Scopus
—