An unbiased self-contact formulation for explicit FEA stabilized by the bipenalty method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00518691" target="_blank" >RIV/61388998:_____/19:00518691 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An unbiased self-contact formulation for explicit FEA stabilized by the bipenalty method
Popis výsledku v původním jazyce
In the explicit finite element analysis (FEA), contact boundary conditions are often enforced by the penalty method. However, it is well known that the penalty parameter negatively affects the size of the critical time step of the explicit time integration scheme. A remedy to this issue could provide the bipenalty method. Recently, promising results for 1D contact-impact problems have con rmed this idea. Therefore,further development and testing for higher spatial dimensions followed. The objective of this contribution is to present the energy conservation properties of the bipenalty method and thus to prove the suitability of this approach for solving the explicit FEA contact-impact problems. To this end, a symmetry preserving contact algorithm has been modifed to consider self-contact. Several numerical examples will be presented to demonstrate the performance of the proposed contact algorithm.
Název v anglickém jazyce
An unbiased self-contact formulation for explicit FEA stabilized by the bipenalty method
Popis výsledku anglicky
In the explicit finite element analysis (FEA), contact boundary conditions are often enforced by the penalty method. However, it is well known that the penalty parameter negatively affects the size of the critical time step of the explicit time integration scheme. A remedy to this issue could provide the bipenalty method. Recently, promising results for 1D contact-impact problems have con rmed this idea. Therefore,further development and testing for higher spatial dimensions followed. The objective of this contribution is to present the energy conservation properties of the bipenalty method and thus to prove the suitability of this approach for solving the explicit FEA contact-impact problems. To this end, a symmetry preserving contact algorithm has been modifed to consider self-contact. Several numerical examples will be presented to demonstrate the performance of the proposed contact algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GACM Colloquium on Computational Mechanics For Young Scientists From Academia and Industry
ISBN
978-3-7376-5093-9
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
255-258
Název nakladatele
University of Kassel, Germany
Místo vydání
Kassel, Germany
Místo konání akce
University of Kassel
Datum konání akce
28. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—