Konvergence spekter tenkych variet typu grafu
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F05%3A00032293" target="_blank" >RIV/61389005:_____/05:00032293 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergence of spectra of graph-like thin manifolds
Popis výsledku v původním jazyce
We consider a family of compact manifolds which shrinks with respect to an appropriate parameter to a graph. The main result is that the spectrum of the Laplace-Beltrami operator converges to the spectrum of the (differential) Laplacian on the graph withKirchhoff boundary conditions at the vertices. On the other hand, if the shrinking at the vertex parts of the manifold is sufficiently slower comparing to that of the edge parts, the limiting spectrum corresponds to decoupled edges with Dirichlet boundary conditions at the endpoints. At the borderline between the two regimes we have a third possibility when the limiting spectrum can be described by a nontrivial coupling at the vertices.
Název v anglickém jazyce
Convergence of spectra of graph-like thin manifolds
Popis výsledku anglicky
We consider a family of compact manifolds which shrinks with respect to an appropriate parameter to a graph. The main result is that the spectrum of the Laplace-Beltrami operator converges to the spectrum of the (differential) Laplacian on the graph withKirchhoff boundary conditions at the vertices. On the other hand, if the shrinking at the vertex parts of the manifold is sufficiently slower comparing to that of the edge parts, the limiting spectrum corresponds to decoupled edges with Dirichlet boundary conditions at the endpoints. At the borderline between the two regimes we have a third possibility when the limiting spectrum can be described by a nontrivial coupling at the vertices.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA1048101" target="_blank" >IAA1048101: Kvantové grafy a příbuzné systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
39
Strana od-do
77-115
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—