Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the absence of absolutely continuous spectra for Schrodinger operators on radial tree graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F10%3A00357921" target="_blank" >RIV/61389005:_____/10:00357921 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the absence of absolutely continuous spectra for Schrodinger operators on radial tree graphs

  • Popis výsledku v původním jazyce

    The subject of the paper is Schrodinger operators on tree graphs which are radial, having the branching number b(n) at all the vertices at the distance t(n) from the root. We consider a family of coupling conditions at the vertices characterized by (b(n)- 1)(2) + 4 real parameters. We prove that if the graph is sparse so that there is a subsequence of {t(n+1) - t(n)} growing to infinity, in the absence of the potential the absolutely continuous spectrum is empty for a large subset of these vertex couplings, but on the the other hand, there are cases when the spectrum of such a Schrodinger operator can be purely absolutely continuous.

  • Název v anglickém jazyce

    On the absence of absolutely continuous spectra for Schrodinger operators on radial tree graphs

  • Popis výsledku anglicky

    The subject of the paper is Schrodinger operators on tree graphs which are radial, having the branching number b(n) at all the vertices at the distance t(n) from the root. We consider a family of coupling conditions at the vertices characterized by (b(n)- 1)(2) + 4 real parameters. We prove that if the graph is sparse so that there is a subsequence of {t(n+1) - t(n)} growing to infinity, in the absence of the potential the absolutely continuous spectrum is empty for a large subset of these vertex couplings, but on the the other hand, there are cases when the spectrum of such a Schrodinger operator can be purely absolutely continuous.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LC06002" target="_blank" >LC06002: Dopplerův ústav pro matematickou fyziku a aplikovanou matematiku</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

  • Kód UT WoS článku

    000285768900007

  • EID výsledku v databázi Scopus