On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00458924" target="_blank" >RIV/61389005:_____/16:00458924 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/16:00307465
Výsledek na webu
<a href="http://dx.doi.org/10.3233/ASY-151341" target="_blank" >http://dx.doi.org/10.3233/ASY-151341</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/ASY-151341" target="_blank" >10.3233/ASY-151341</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries
Popis výsledku v původním jazyce
Let S subset of R-3 be a C-4-smooth relatively compact orientable surface with a sufficiently regular boundary. For beta is an element of R+, let E-j(beta) denote the jth negative eigenvalue of the operator associated with the quadratic form nH-1(R-3) (sic) u (sic) integral integral integral(R3) vertical bar del u vertical bar(2) dx - beta integral integral(s) vertical bar u vertical bar(2) d sigma where sigma is the two-dimensional Hausdorff measure on S. We show that for each fixed j one has the asymptotic expansion E-j(beta) = -beta(2)/4 + mu(D)(j) + o(1) as beta -> +infinity where mu(D)(j) is the jth eigenvalue of the operator -Delta s +K - M-2 on L-2 (S), in which K and M are the Gauss and mean curvatures, respectively, and As is the Laplace Beltrami operator with the Dirichlet condition at the boundary of S. If, in addition, the boundary of S is C-2-smooth, then the remainder estimate can be improved to O(beta(-1) log beta).
Název v anglickém jazyce
On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries
Popis výsledku anglicky
Let S subset of R-3 be a C-4-smooth relatively compact orientable surface with a sufficiently regular boundary. For beta is an element of R+, let E-j(beta) denote the jth negative eigenvalue of the operator associated with the quadratic form nH-1(R-3) (sic) u (sic) integral integral integral(R3) vertical bar del u vertical bar(2) dx - beta integral integral(s) vertical bar u vertical bar(2) d sigma where sigma is the two-dimensional Hausdorff measure on S. We show that for each fixed j one has the asymptotic expansion E-j(beta) = -beta(2)/4 + mu(D)(j) + o(1) as beta -> +infinity where mu(D)(j) is the jth eigenvalue of the operator -Delta s +K - M-2 on L-2 (S), in which K and M are the Gauss and mean curvatures, respectively, and As is the Laplace Beltrami operator with the Dirichlet condition at the boundary of S. If, in addition, the boundary of S is C-2-smooth, then the remainder estimate can be improved to O(beta(-1) log beta).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorózní metody v kvantové dynamice: geometrie a magnetická pole</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Asymptotic Analysis
ISSN
0921-7134
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000372741100001
EID výsledku v databázi Scopus
2-s2.0-84960962661