The Hardy inequality and the heat equation with magnetic field in any dimension
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00462436" target="_blank" >RIV/61389005:_____/16:00462436 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/03605302.2016.1179317" target="_blank" >http://dx.doi.org/10.1080/03605302.2016.1179317</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03605302.2016.1179317" target="_blank" >10.1080/03605302.2016.1179317</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Hardy inequality and the heat equation with magnetic field in any dimension
Popis výsledku v původním jazyce
n the Euclidean space of any dimension d, we consider the heat semi group generated by the magnetic Schrodinger operator from which an inverse-square potential is subtracted to make the operator critical in the magnetic-free case. Assuming that the magnetic field is compactly supported, we show that the polynomial large-time behavior of the heat semigroup is determined by the eigenvalue problem for a magnetic Schrodinger operator on the (d-1)-dimensional sphere whose vector potential reflects the behavior of the magnetic field at the space infinity. From the spectral problem on the sphere, we deduce that in d = 2 there is an improvement of the decay rate of the heat semigroup by a polynomial factor with power proportional to the distance of the total magnetic flux to the discrete set of flux quanta, while there is no extra polynomial decay rate in higher dimensions. To prove the results, we establish new magnetic Hardy-type inequalities for the Schrodinger operator and develop the method of self-similar variables and weighted Sobolev spaces for the associated heat equation.
Název v anglickém jazyce
The Hardy inequality and the heat equation with magnetic field in any dimension
Popis výsledku anglicky
n the Euclidean space of any dimension d, we consider the heat semi group generated by the magnetic Schrodinger operator from which an inverse-square potential is subtracted to make the operator critical in the magnetic-free case. Assuming that the magnetic field is compactly supported, we show that the polynomial large-time behavior of the heat semigroup is determined by the eigenvalue problem for a magnetic Schrodinger operator on the (d-1)-dimensional sphere whose vector potential reflects the behavior of the magnetic field at the space infinity. From the spectral problem on the sphere, we deduce that in d = 2 there is an improvement of the decay rate of the heat semigroup by a polynomial factor with power proportional to the distance of the total magnetic flux to the discrete set of flux quanta, while there is no extra polynomial decay rate in higher dimensions. To prove the results, we establish new magnetic Hardy-type inequalities for the Schrodinger operator and develop the method of self-similar variables and weighted Sobolev spaces for the associated heat equation.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorózní metody v kvantové dynamice: geometrie a magnetická pole</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Partial Differential Equations
ISSN
0360-5302
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
1056-1088
Kód UT WoS článku
000380142200003
EID výsledku v databázi Scopus
2-s2.0-84975282623