Asymptotics of Resonances Induced by Point Interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00484314" target="_blank" >RIV/61389005:_____/17:00484314 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.12693/APhysPolA.132.1677" target="_blank" >http://dx.doi.org/10.12693/APhysPolA.132.1677</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12693/APhysPolA.132.1677" target="_blank" >10.12693/APhysPolA.132.1677</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotics of Resonances Induced by Point Interactions
Popis výsledku v původním jazyce
We consider the resonances of the self-adjoint three-dimensional Schrodinger operator with point interactions of constant strength supported on the set X = {x(n)}(n-1)(N). The size of X is defined by V-X = max pi is an element of Pi(N) Sigma(N)(n = 1) vertical bar x(n) - x(pi(n))vertical bar, where Pi(N) is the family of all the permutations of the set {1, 2, ... N}. We prove that the number of resonances counted with multiplicities and lying inside the disc of radius R behaves asymptotically linear W-X is an element of R + O(1) as R -> infinity, where the constant W-X is an element of[0, V-X] can be seen as the effective size of X. Moreover, we show that there exist a configuration of any number of points such that W-X = V-X. Finally, we construct an example for N = 4 with W-X < V-X, which can be viewed as an analogue of a quantum graph with non-Weyl asymptotics of resonances.
Název v anglickém jazyce
Asymptotics of Resonances Induced by Point Interactions
Popis výsledku anglicky
We consider the resonances of the self-adjoint three-dimensional Schrodinger operator with point interactions of constant strength supported on the set X = {x(n)}(n-1)(N). The size of X is defined by V-X = max pi is an element of Pi(N) Sigma(N)(n = 1) vertical bar x(n) - x(pi(n))vertical bar, where Pi(N) is the family of all the permutations of the set {1, 2, ... N}. We prove that the number of resonances counted with multiplicities and lying inside the disc of radius R behaves asymptotically linear W-X is an element of R + O(1) as R -> infinity, where the constant W-X is an element of[0, V-X] can be seen as the effective size of X. Moreover, we show that there exist a configuration of any number of points such that W-X = V-X. Finally, we construct an example for N = 4 with W-X < V-X, which can be viewed as an analogue of a quantum graph with non-Weyl asymptotics of resonances.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01706S" target="_blank" >GA17-01706S: Matematicko-fyzikální modely nových materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Physica Polonica. A
ISSN
0587-4246
e-ISSN
—
Svazek periodika
132
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
6
Strana od-do
1677-1682
Kód UT WoS článku
000418702900006
EID výsledku v databázi Scopus
—