Third-order ladder operators, generalized Okamoto and exceptional orthogonal polynomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00553612" target="_blank" >RIV/61389005:_____/22:00553612 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1751-8121/ac43cc" target="_blank" >https://doi.org/10.1088/1751-8121/ac43cc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ac43cc" target="_blank" >10.1088/1751-8121/ac43cc</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Third-order ladder operators, generalized Okamoto and exceptional orthogonal polynomials
Popis výsledku v původním jazyce
We extend and generalize the construction of Sturm-Liouville problems for a family of Hamiltonians constrained to fulfill a third-order shape-invariance condition and focusing on the '-2x/3' hierarchy of solutions to the fourth Painleve transcendent. Such a construction has been previously addressed in the literature for some particular cases but we realize it here in the most general case. The corresponding potential in the Hamiltonian operator is a rationally extended oscillator defined in terms of the conventional Okamoto polynomials, from which we identify three different zero-modes constructed in terms of the generalized Okamoto polynomials. The third-order ladder operators of the system reveal that the complete set of eigenfunctions is decomposed as a union of three disjoint sequences of solutions, generated from a set of three-term recurrence relations. We also identify a link between the eigenfunctions of the Hamiltonian operator and a special family of exceptional Hermite polynomial.
Název v anglickém jazyce
Third-order ladder operators, generalized Okamoto and exceptional orthogonal polynomials
Popis výsledku anglicky
We extend and generalize the construction of Sturm-Liouville problems for a family of Hamiltonians constrained to fulfill a third-order shape-invariance condition and focusing on the '-2x/3' hierarchy of solutions to the fourth Painleve transcendent. Such a construction has been previously addressed in the literature for some particular cases but we realize it here in the most general case. The corresponding potential in the Hamiltonian operator is a rationally extended oscillator defined in terms of the conventional Okamoto polynomials, from which we identify three different zero-modes constructed in terms of the generalized Okamoto polynomials. The third-order ladder operators of the system reveal that the complete set of eigenfunctions is decomposed as a union of three disjoint sequences of solutions, generated from a set of three-term recurrence relations. We also identify a link between the eigenfunctions of the Hamiltonian operator and a special family of exceptional Hermite polynomial.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0017163" target="_blank" >EF18_053/0017163: Fyzici v pohybu II</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
55
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
31
Strana od-do
045205
Kód UT WoS článku
000744267400001
EID výsledku v databázi Scopus
2-s2.0-85124146373