On the general family of third-order shape-invariant Hamiltonians related to generalized Hermite polynomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00564995" target="_blank" >RIV/61389005:_____/22:00564995 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.physd.2022.133529" target="_blank" >https://doi.org/10.1016/j.physd.2022.133529</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2022.133529" target="_blank" >10.1016/j.physd.2022.133529</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the general family of third-order shape-invariant Hamiltonians related to generalized Hermite polynomials
Popis výsledku v původním jazyce
This work reports and classifies the most general construction of rational quantum potentials in terms of the generalized Hermite polynomials. This is achieved by exploiting the intrinsic relation between third-order shape-invariant Hamiltonians and the -1/x and -2x hierarchies of rational solutions of the fourth Painleve equation. Such a relation unequivocally establishes the discrete spectrum structure, composed as the union of a finite-and infinite-dimensional sequence of equidistant eigenvalues separated by a gap. The two indices of the generalized Hermite polynomials define the dimension of the finite sequence and the gap. Likewise, the complete set of eigensolutions decomposes into two disjoint subsets, whose elements are written as the product of a polynomial times a weight function supported on the real line. These polynomials fulfill a second-order differential equation and are alternatively determined from a three-term recurrence relation, the initial conditions of which are also fixed in terms of generalized Hermite polynomials.
Název v anglickém jazyce
On the general family of third-order shape-invariant Hamiltonians related to generalized Hermite polynomials
Popis výsledku anglicky
This work reports and classifies the most general construction of rational quantum potentials in terms of the generalized Hermite polynomials. This is achieved by exploiting the intrinsic relation between third-order shape-invariant Hamiltonians and the -1/x and -2x hierarchies of rational solutions of the fourth Painleve equation. Such a relation unequivocally establishes the discrete spectrum structure, composed as the union of a finite-and infinite-dimensional sequence of equidistant eigenvalues separated by a gap. The two indices of the generalized Hermite polynomials define the dimension of the finite sequence and the gap. Likewise, the complete set of eigensolutions decomposes into two disjoint subsets, whose elements are written as the product of a polynomial times a weight function supported on the real line. These polynomials fulfill a second-order differential equation and are alternatively determined from a three-term recurrence relation, the initial conditions of which are also fixed in terms of generalized Hermite polynomials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0017163" target="_blank" >EF18_053/0017163: Fyzici v pohybu II</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica. D
ISSN
0167-2789
e-ISSN
1872-8022
Svazek periodika
442
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
133529
Kód UT WoS článku
000880401700008
EID výsledku v databázi Scopus
2-s2.0-85139497398