Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spectrum of the Laplacian on a Domain Perturbed by Small Resonators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00582305" target="_blank" >RIV/61389005:_____/23:00582305 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62690094:18470/23:50021108

  • Výsledek na webu

    <a href="https://doi.org/10.1137/22M148207X" target="_blank" >https://doi.org/10.1137/22M148207X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/22M148207X" target="_blank" >10.1137/22M148207X</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spectrum of the Laplacian on a Domain Perturbed by Small Resonators

  • Popis výsledku v původním jazyce

    It is widely known that the spectrum of the Dirichlet Laplacian is stable under small perturbations of a domain, while in the case of the Neumann or mixed boundary conditions the spectrum may abruptly change. In this work we discuss an example of such a domain perturbation. Let Ω be a (not necessarily bounded) domain in ℝn. We perturb it to (Equation presented), where Sk, ε are closed surfaces with small suitably scaled holes (''windows'') through which the bounded domains enclosed by these surfaces (''resonators'') are connected to the outer domain. When ε goes to zero, the resonators shrink to points. We prove that in the limit ε → 0 the spectrum of the Laplacian on Ωε with the Neumann boundary conditions on Sk, ε and the Dirichlet boundary conditions on the outer boundary converges to the union of the spectrum of the Dirichlet Laplacian on Ω and the numbers γk, k = 1, ..., m, being equal to 1/4 times the limit of the ratio between the capacity of the kth window and the volume of the kth resonator. We obtain an estimate on the rate of this convergence with respect to the Hausdorff-type metrics. Also, an application of this result is presented: we construct an unbounded waveguide-like domain with inserted resonators such that the eigenvalues of the Laplacian on this domain lying below the essential spectrum threshold do coincide with the prescribed numbers.

  • Název v anglickém jazyce

    Spectrum of the Laplacian on a Domain Perturbed by Small Resonators

  • Popis výsledku anglicky

    It is widely known that the spectrum of the Dirichlet Laplacian is stable under small perturbations of a domain, while in the case of the Neumann or mixed boundary conditions the spectrum may abruptly change. In this work we discuss an example of such a domain perturbation. Let Ω be a (not necessarily bounded) domain in ℝn. We perturb it to (Equation presented), where Sk, ε are closed surfaces with small suitably scaled holes (''windows'') through which the bounded domains enclosed by these surfaces (''resonators'') are connected to the outer domain. When ε goes to zero, the resonators shrink to points. We prove that in the limit ε → 0 the spectrum of the Laplacian on Ωε with the Neumann boundary conditions on Sk, ε and the Dirichlet boundary conditions on the outer boundary converges to the union of the spectrum of the Dirichlet Laplacian on Ω and the numbers γk, k = 1, ..., m, being equal to 1/4 times the limit of the ratio between the capacity of the kth window and the volume of the kth resonator. We obtain an estimate on the rate of this convergence with respect to the Hausdorff-type metrics. Also, an application of this result is presented: we construct an unbounded waveguide-like domain with inserted resonators such that the eigenvalues of the Laplacian on this domain lying below the essential spectrum threshold do coincide with the prescribed numbers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-18739S" target="_blank" >GA22-18739S: Asymptotická a spektrální analýza operátorů v matematické fyzice</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

    1095-7154

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    36

  • Strana od-do

    3677-3712

  • Kód UT WoS článku

    001114782600011

  • EID výsledku v databázi Scopus

    2-s2.0-85172657366