Interior solution of azimuthally symmetric case of Laplace equation in orthogonal similar oblate spheroidal coordinates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00586597" target="_blank" >RIV/61389005:_____/24:00586597 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1140/epjp/s13360-024-05181-4" target="_blank" >https://doi.org/10.1140/epjp/s13360-024-05181-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/s13360-024-05181-4" target="_blank" >10.1140/epjp/s13360-024-05181-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interior solution of azimuthally symmetric case of Laplace equation in orthogonal similar oblate spheroidal coordinates
Popis výsledku v původním jazyce
Curvilinear coordinate systems distinct from the rectangular Cartesian coordinate system are particularly valuable in the field calculations as they facilitate the expression of boundary conditions of differential equations in a reasonably simple way when the coordinate surfaces fit the physical boundaries of the problem. The recently finalized orthogonal similar oblate spheroidal (SOS) coordinate system can be particularly useful for a physical processes description inside or in the vicinity of the bodies or particles with the geometry of an oblate spheroid. The solution of the azimuthally symmetric case of the Laplace equation was found for the interior space in the orthogonal SOS coordinates. In the frame of the derivation of the harmonic functions, the Laplace equation was separated by a special separation procedure. A generalized Legendre equation was introduced as the equation for the angular part of the separated Laplace equation. The harmonic functions were determined as relations involving generalized Legendre functions of the first and of the second kind. Several lower-degree functions are reported. Recursion formula facilitating determination of the higher-degree harmonic functions was found. The general solution of the azimuthally symmetric Laplace equation for the interior space in the SOS coordinates is reported.
Název v anglickém jazyce
Interior solution of azimuthally symmetric case of Laplace equation in orthogonal similar oblate spheroidal coordinates
Popis výsledku anglicky
Curvilinear coordinate systems distinct from the rectangular Cartesian coordinate system are particularly valuable in the field calculations as they facilitate the expression of boundary conditions of differential equations in a reasonably simple way when the coordinate surfaces fit the physical boundaries of the problem. The recently finalized orthogonal similar oblate spheroidal (SOS) coordinate system can be particularly useful for a physical processes description inside or in the vicinity of the bodies or particles with the geometry of an oblate spheroid. The solution of the azimuthally symmetric case of the Laplace equation was found for the interior space in the orthogonal SOS coordinates. In the frame of the derivation of the harmonic functions, the Laplace equation was separated by a special separation procedure. A generalized Legendre equation was introduced as the equation for the angular part of the separated Laplace equation. The harmonic functions were determined as relations involving generalized Legendre functions of the first and of the second kind. Several lower-degree functions are reported. Recursion formula facilitating determination of the higher-degree harmonic functions was found. The general solution of the azimuthally symmetric Laplace equation for the interior space in the SOS coordinates is reported.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10304 - Nuclear physics
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004591" target="_blank" >EH22_008/0004591: Feroické multifunkcionality</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal Plus
ISSN
2190-5444
e-ISSN
2190-5444
Svazek periodika
139
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
35
Strana od-do
409
Kód UT WoS článku
001222553700002
EID výsledku v databázi Scopus
2-s2.0-85193258109