A Reappraisal of Lagrangians with Non-Quadratic Velocity Dependence and Branched Hamiltonians
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00588316" target="_blank" >RIV/61389005:_____/24:00588316 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18470/24:50021892
Výsledek na webu
<a href="https://doi.org/10.3390/sym16070860" target="_blank" >https://doi.org/10.3390/sym16070860</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym16070860" target="_blank" >10.3390/sym16070860</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Reappraisal of Lagrangians with Non-Quadratic Velocity Dependence and Branched Hamiltonians
Popis výsledku v původním jazyce
Time and again, non-conventional forms of Lagrangians with non-quadratic velocity dependence have received attention in the literature. For one thing, such Lagrangians have deep connections with several aspects of nonlinear dynamics including specifically the types of the Liénard class, for another, very often, the problem of their quantization opens up multiple branches of the corresponding Hamiltonians, ending up with the presence of singularities in the associated eigenfunctions. In this article, we furnish a brief review of the classical theory of such Lagrangians and the associated branched Hamiltonians, starting with the example of Liénard-type systems. We then take up other cases where the Lagrangians depend on velocity with powers greater than two while still having a tractable mathematical structure, while also describing the associated branched Hamiltonians for such systems. For various examples, we emphasize the emergence of the notion of momentum-dependent mass in the theory of branched Hamiltonians.
Název v anglickém jazyce
A Reappraisal of Lagrangians with Non-Quadratic Velocity Dependence and Branched Hamiltonians
Popis výsledku anglicky
Time and again, non-conventional forms of Lagrangians with non-quadratic velocity dependence have received attention in the literature. For one thing, such Lagrangians have deep connections with several aspects of nonlinear dynamics including specifically the types of the Liénard class, for another, very often, the problem of their quantization opens up multiple branches of the corresponding Hamiltonians, ending up with the presence of singularities in the associated eigenfunctions. In this article, we furnish a brief review of the classical theory of such Lagrangians and the associated branched Hamiltonians, starting with the example of Liénard-type systems. We then take up other cases where the Lagrangians depend on velocity with powers greater than two while still having a tractable mathematical structure, while also describing the associated branched Hamiltonians for such systems. For various examples, we emphasize the emergence of the notion of momentum-dependent mass in the theory of branched Hamiltonians.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry-Basel
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
16
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
860
Kód UT WoS článku
001277631800001
EID výsledku v databázi Scopus
2-s2.0-85199896324