A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00598966" target="_blank" >RIV/61389005:_____/24:00598966 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/23M1624658" target="_blank" >https://doi.org/10.1137/23M1624658</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/23M1624658" target="_blank" >10.1137/23M1624658</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function
Popis výsledku v původním jazyce
We obtain an upper bound on the lowest magnetic Neumann eigenvalue of a bounded, convex, smooth, planar domain with moderate intensity of the homogeneous magnetic field. This bound is given as a product of a purely geometric factor expressed in terms of the torsion function and of the lowest magnetic Neumann eigenvalue of the disk having the same maximal value of the torsion function as the domain. The bound is sharp in the sense that equality is attained for disks. Furthermore, we derive from our upper bound that the lowest magnetic Neumann eigenvalue with the homogeneous magnetic field is maximized by the disk among all ellipses of fixed area provided that the intensity of the magnetic field does not exceed an explicit constant dependent only on the fixed area.
Název v anglickém jazyce
A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function
Popis výsledku anglicky
We obtain an upper bound on the lowest magnetic Neumann eigenvalue of a bounded, convex, smooth, planar domain with moderate intensity of the homogeneous magnetic field. This bound is given as a product of a purely geometric factor expressed in terms of the torsion function and of the lowest magnetic Neumann eigenvalue of the disk having the same maximal value of the torsion function as the domain. The bound is sharp in the sense that equality is attained for disks. Furthermore, we derive from our upper bound that the lowest magnetic Neumann eigenvalue with the homogeneous magnetic field is maximized by the disk among all ellipses of fixed area provided that the intensity of the magnetic field does not exceed an explicit constant dependent only on the fixed area.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-07129S" target="_blank" >GA21-07129S: Nové jevy pocházející z narušení invariance vůči časové inversi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Svazek periodika
56
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
5723-5745
Kód UT WoS článku
001315424500044
EID výsledku v databázi Scopus
2-s2.0-85201234470