Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00598966" target="_blank" >RIV/61389005:_____/24:00598966 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1137/23M1624658" target="_blank" >https://doi.org/10.1137/23M1624658</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/23M1624658" target="_blank" >10.1137/23M1624658</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function

  • Popis výsledku v původním jazyce

    We obtain an upper bound on the lowest magnetic Neumann eigenvalue of a bounded, convex, smooth, planar domain with moderate intensity of the homogeneous magnetic field. This bound is given as a product of a purely geometric factor expressed in terms of the torsion function and of the lowest magnetic Neumann eigenvalue of the disk having the same maximal value of the torsion function as the domain. The bound is sharp in the sense that equality is attained for disks. Furthermore, we derive from our upper bound that the lowest magnetic Neumann eigenvalue with the homogeneous magnetic field is maximized by the disk among all ellipses of fixed area provided that the intensity of the magnetic field does not exceed an explicit constant dependent only on the fixed area.

  • Název v anglickém jazyce

    A geometric bound on the lowest magnetic Neumann eigenvalue via the torsion function

  • Popis výsledku anglicky

    We obtain an upper bound on the lowest magnetic Neumann eigenvalue of a bounded, convex, smooth, planar domain with moderate intensity of the homogeneous magnetic field. This bound is given as a product of a purely geometric factor expressed in terms of the torsion function and of the lowest magnetic Neumann eigenvalue of the disk having the same maximal value of the torsion function as the domain. The bound is sharp in the sense that equality is attained for disks. Furthermore, we derive from our upper bound that the lowest magnetic Neumann eigenvalue with the homogeneous magnetic field is maximized by the disk among all ellipses of fixed area provided that the intensity of the magnetic field does not exceed an explicit constant dependent only on the fixed area.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-07129S" target="_blank" >GA21-07129S: Nové jevy pocházející z narušení invariance vůči časové inversi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

    1095-7154

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    5723-5745

  • Kód UT WoS článku

    001315424500044

  • EID výsledku v databázi Scopus

    2-s2.0-85201234470