Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17110%2F23%3AA2402J4U" target="_blank" >RIV/61988987:17110/23:A2402J4U - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/47813059:19240/23:A0001149 RIV/47813059:19630/23:A0000302

  • Výsledek na webu

    <a href="https://reader.elsevier.com/reader/sd/pii/S1746809423000447?token=A38677752C832EB428A31490D5A03342A77F0A614FFA9528634483BB1DC565081FA71891304D1BDC6EB7ADA29B16E96B&originRegion=eu-west-1&originCreation=20230222121155" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S1746809423000447?token=A38677752C832EB428A31490D5A03342A77F0A614FFA9528634483BB1DC565081FA71891304D1BDC6EB7ADA29B16E96B&originRegion=eu-west-1&originCreation=20230222121155</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bspc.2023.104611" target="_blank" >10.1016/j.bspc.2023.104611</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging

  • Popis výsledku v původním jazyce

    Matching MRI brain images between patients or mapping patients’ MRI slices to the simulated atlas of a brain is key to the automatic registration of MRI of a brain. The ability to match MRI images would also enable such applications as indexing and searching MRI images among multiple patients or selecting images from the region of interest. In this work, we have introduced robustness, accuracy and cumulative distance metrics and methodology that allows us to compare different techniques and approaches in matching brain MRI of different patients or matching MRI brain slice to a position in the brain atlas. To that end, we have used feature detection methods AGAST, AKAZE, BRISK, GFTT, HardNet, and ORB, which are established methods in image processing, and compared them on their resistance to image degradation and their ability to match the same brain MRI slice of different patients. We have demonstrated that some of these techniques can correctly match most of the brain MRI slices of different patients. When matching is performed with the atlas of the human brain, their performance is significantly lower. The best performing feature detection method was a combination of SIFT detector and HardNet descriptor that achieved 93% accuracy in matching images with other patients and only 52% accurately matched images when compared to atlas. © 2023 Elsevier Ltd

  • Název v anglickém jazyce

    A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging

  • Popis výsledku anglicky

    Matching MRI brain images between patients or mapping patients’ MRI slices to the simulated atlas of a brain is key to the automatic registration of MRI of a brain. The ability to match MRI images would also enable such applications as indexing and searching MRI images among multiple patients or selecting images from the region of interest. In this work, we have introduced robustness, accuracy and cumulative distance metrics and methodology that allows us to compare different techniques and approaches in matching brain MRI of different patients or matching MRI brain slice to a position in the brain atlas. To that end, we have used feature detection methods AGAST, AKAZE, BRISK, GFTT, HardNet, and ORB, which are established methods in image processing, and compared them on their resistance to image degradation and their ability to match the same brain MRI slice of different patients. We have demonstrated that some of these techniques can correctly match most of the brain MRI slices of different patients. When matching is performed with the atlas of the human brain, their performance is significantly lower. The best performing feature detection method was a combination of SIFT detector and HardNet descriptor that achieved 93% accuracy in matching images with other patients and only 52% accurately matched images when compared to atlas. © 2023 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biomedical Signal Processing and Control

  • ISSN

    1746-8094

  • e-ISSN

    1746-8108

  • Svazek periodika

  • Číslo periodika v rámci svazku

    duben 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    24

  • Strana od-do

  • Kód UT WoS článku

    000925845400001

  • EID výsledku v databázi Scopus

    2-s2.0-85146707007