A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17110%2F23%3AA2402J4U" target="_blank" >RIV/61988987:17110/23:A2402J4U - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/47813059:19240/23:A0001149 RIV/47813059:19630/23:A0000302
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S1746809423000447?token=A38677752C832EB428A31490D5A03342A77F0A614FFA9528634483BB1DC565081FA71891304D1BDC6EB7ADA29B16E96B&originRegion=eu-west-1&originCreation=20230222121155" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S1746809423000447?token=A38677752C832EB428A31490D5A03342A77F0A614FFA9528634483BB1DC565081FA71891304D1BDC6EB7ADA29B16E96B&originRegion=eu-west-1&originCreation=20230222121155</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2023.104611" target="_blank" >10.1016/j.bspc.2023.104611</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging
Popis výsledku v původním jazyce
Matching MRI brain images between patients or mapping patients’ MRI slices to the simulated atlas of a brain is key to the automatic registration of MRI of a brain. The ability to match MRI images would also enable such applications as indexing and searching MRI images among multiple patients or selecting images from the region of interest. In this work, we have introduced robustness, accuracy and cumulative distance metrics and methodology that allows us to compare different techniques and approaches in matching brain MRI of different patients or matching MRI brain slice to a position in the brain atlas. To that end, we have used feature detection methods AGAST, AKAZE, BRISK, GFTT, HardNet, and ORB, which are established methods in image processing, and compared them on their resistance to image degradation and their ability to match the same brain MRI slice of different patients. We have demonstrated that some of these techniques can correctly match most of the brain MRI slices of different patients. When matching is performed with the atlas of the human brain, their performance is significantly lower. The best performing feature detection method was a combination of SIFT detector and HardNet descriptor that achieved 93% accuracy in matching images with other patients and only 52% accurately matched images when compared to atlas. © 2023 Elsevier Ltd
Název v anglickém jazyce
A survey of feature detection methods for localisation of plain sections of axial brain magnetic resonance imaging
Popis výsledku anglicky
Matching MRI brain images between patients or mapping patients’ MRI slices to the simulated atlas of a brain is key to the automatic registration of MRI of a brain. The ability to match MRI images would also enable such applications as indexing and searching MRI images among multiple patients or selecting images from the region of interest. In this work, we have introduced robustness, accuracy and cumulative distance metrics and methodology that allows us to compare different techniques and approaches in matching brain MRI of different patients or matching MRI brain slice to a position in the brain atlas. To that end, we have used feature detection methods AGAST, AKAZE, BRISK, GFTT, HardNet, and ORB, which are established methods in image processing, and compared them on their resistance to image degradation and their ability to match the same brain MRI slice of different patients. We have demonstrated that some of these techniques can correctly match most of the brain MRI slices of different patients. When matching is performed with the atlas of the human brain, their performance is significantly lower. The best performing feature detection method was a combination of SIFT detector and HardNet descriptor that achieved 93% accuracy in matching images with other patients and only 52% accurately matched images when compared to atlas. © 2023 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
—
Číslo periodika v rámci svazku
duben 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
—
Kód UT WoS článku
000925845400001
EID výsledku v databázi Scopus
2-s2.0-85146707007