An Efficient Gabor Walsh-Hadamard Transform Based Approach for Retrieving Brain Tumor Images From MRI
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018294" target="_blank" >RIV/62690094:18470/21:50018294 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9521518" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9521518</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3107371" target="_blank" >10.1109/ACCESS.2021.3107371</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Efficient Gabor Walsh-Hadamard Transform Based Approach for Retrieving Brain Tumor Images From MRI
Popis výsledku v původním jazyce
Brain tumors are a serious and death-defying disease for human life. Discovering an appropriate brain tumor image from a magnetic resonance imaging (MRI) archive is a challenging job for the radiologist. Most search engines retrieve images on the basis of traditional text-based approaches. The main challenge in the MRI image analysis is that low-level visual information captured by the MRI machine and the high-level information identified by the assessor. This semantic gap is addressed in this study by designing a new feature extraction technique. In this paper, we introduce Content-Based Medical Image retrieval (CBMIR) system for retrieval of brain tumor images from the large data. Firstly, we remove noise from MRI images employing several filtering techniques. Afterward, we design a feature extraction scheme combining Gabor filtering technique (which is mainly focused on specific frequency content at the image region) and Walsh-Hadamard transform (WHT) (conquer technique for easy configuration of image) for discovering representative features from MRI images. After that, for retrieving the accurate and reliable image, we employ Fuzzy C-Means clustering Minkowski distance metric that can evaluate the similarity between the query image and database images. The proposed methodology design was tested on a publicly available brain tumor MRI image database. The experimental results demonstrate that our proposed approach outperforms most of the existing techniques like Gabor, wavelet, and Hough transform in detecting brain tumors and also take less time. The proposed approach will be beneficial for radiologists and also for technologists to build an automatic decision support system that will produce reproducible and objective results with high accuracy.
Název v anglickém jazyce
An Efficient Gabor Walsh-Hadamard Transform Based Approach for Retrieving Brain Tumor Images From MRI
Popis výsledku anglicky
Brain tumors are a serious and death-defying disease for human life. Discovering an appropriate brain tumor image from a magnetic resonance imaging (MRI) archive is a challenging job for the radiologist. Most search engines retrieve images on the basis of traditional text-based approaches. The main challenge in the MRI image analysis is that low-level visual information captured by the MRI machine and the high-level information identified by the assessor. This semantic gap is addressed in this study by designing a new feature extraction technique. In this paper, we introduce Content-Based Medical Image retrieval (CBMIR) system for retrieval of brain tumor images from the large data. Firstly, we remove noise from MRI images employing several filtering techniques. Afterward, we design a feature extraction scheme combining Gabor filtering technique (which is mainly focused on specific frequency content at the image region) and Walsh-Hadamard transform (WHT) (conquer technique for easy configuration of image) for discovering representative features from MRI images. After that, for retrieving the accurate and reliable image, we employ Fuzzy C-Means clustering Minkowski distance metric that can evaluate the similarity between the query image and database images. The proposed methodology design was tested on a publicly available brain tumor MRI image database. The experimental results demonstrate that our proposed approach outperforms most of the existing techniques like Gabor, wavelet, and Hough transform in detecting brain tumors and also take less time. The proposed approach will be beneficial for radiologists and also for technologists to build an automatic decision support system that will produce reproducible and objective results with high accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
119078-119089
Kód UT WoS článku
000692174600001
EID výsledku v databázi Scopus
2-s2.0-85113902252