Farkas' Lemma, Gale's Theorem, and Linear Programming: the Infinite Case in an Algebraic Way
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F12%3AA130164B" target="_blank" >RIV/61988987:17310/12:A130164B - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Farkas' Lemma, Gale's Theorem, and Linear Programming: the Infinite Case in an Algebraic Way
Popis výsledku v původním jazyce
We study a problem of linear programming in the setting of a vector space over a linearly ordered (possibly skew) field. The dimension of the space may be infinite. The objective function is a linear mapping into another linearly ordered vector space over the same field. In that algebraic setting, we recall known results: Farkas' Lemma, Gale's Theorem of the alternative, and the Duality Theorem for linear programming with finite number of linear constraints. Given that ``semi-infinite'' case, i.e. results for finite systems of linear inequalities in an infinite-dimensional space, we are motivated to consider the infinite case: infinite systems of linear inequalities in an infinite-dimensional space. In the described setting, we formulate an infinite variant of Farkas' Lemma along with an infinite variant of Gale's Theorem of the alternative. Finally, we formulate the problem of an infinite linear programming, its dual problem, and the Duality Theorem for the problems.
Název v anglickém jazyce
Farkas' Lemma, Gale's Theorem, and Linear Programming: the Infinite Case in an Algebraic Way
Popis výsledku anglicky
We study a problem of linear programming in the setting of a vector space over a linearly ordered (possibly skew) field. The dimension of the space may be infinite. The objective function is a linear mapping into another linearly ordered vector space over the same field. In that algebraic setting, we recall known results: Farkas' Lemma, Gale's Theorem of the alternative, and the Duality Theorem for linear programming with finite number of linear constraints. Given that ``semi-infinite'' case, i.e. results for finite systems of linear inequalities in an infinite-dimensional space, we are motivated to consider the infinite case: infinite systems of linear inequalities in an infinite-dimensional space. In the described setting, we formulate an infinite variant of Farkas' Lemma along with an infinite variant of Gale's Theorem of the alternative. Finally, we formulate the problem of an infinite linear programming, its dual problem, and the Duality Theorem for the problems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Global Journal of Mathematical Sciences (GJMS)
ISSN
2164-3709
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
18-23
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—