Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Homogeneity and projective equivalence of differential equation fields

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F12%3AA13016A7" target="_blank" >RIV/61988987:17310/12:A13016A7 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Homogeneity and projective equivalence of differential equation fields

  • Popis výsledku v původním jazyce

    We propose definitions of homogeneity and projective equivalence for systems of ordinary differential equations of order greater than two, which allow us to generalize the concept of a spray (for systems of order two). We show that the Euler-Lagrange fields of parametric Lagrangians of order greater than one which are regular (in a natural sense that we define) form a projective equivalence class of homogeneous systems. We show further that the geodesics, or base integral curves, of projectively equivalent homogeneous differential equation fields are the same apart from orientation-preserving reparametrization; that is, homogeneous differential equation fields determine systems of paths.

  • Název v anglickém jazyce

    Homogeneity and projective equivalence of differential equation fields

  • Popis výsledku anglicky

    We propose definitions of homogeneity and projective equivalence for systems of ordinary differential equations of order greater than two, which allow us to generalize the concept of a spray (for systems of order two). We show that the Euler-Lagrange fields of parametric Lagrangians of order greater than one which are regular (in a natural sense that we define) form a projective equivalence class of homogeneous systems. We show further that the geodesics, or base integral curves, of projectively equivalent homogeneous differential equation fields are the same apart from orientation-preserving reparametrization; that is, homogeneous differential equation fields determine systems of paths.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Globální analýza a geometrie fibrovaných prostorů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    J. Geom. Mech.

  • ISSN

    1941-4889

  • e-ISSN

  • Svazek periodika

    4

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    27-47

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus