The multiplier approach to the projective Finsler metrizability problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F12%3AA13016A8" target="_blank" >RIV/61988987:17310/12:A13016A8 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The multiplier approach to the projective Finsler metrizability problem
Popis výsledku v původním jazyce
The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. In this paper we use Hilbert-type forms to state a number ofdifferent ways of specifying necessary and sufficient conditions for this to be the case, and we show that they are equivalent. We also address several related issues of interest including path spaces, Jacobi fields, totally-geodesic submanifolds of a spray space, and the equivalence of path geometries and projective-equivalence classes of sprays.
Název v anglickém jazyce
The multiplier approach to the projective Finsler metrizability problem
Popis výsledku anglicky
The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. In this paper we use Hilbert-type forms to state a number ofdifferent ways of specifying necessary and sufficient conditions for this to be the case, and we show that they are equivalent. We also address several related issues of interest including path spaces, Jacobi fields, totally-geodesic submanifolds of a spray space, and the equivalence of path geometries and projective-equivalence classes of sprays.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Globální analýza a geometrie fibrovaných prostorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
604-621
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—